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ABSTRACT
pH O

;L*’ This report presents the results of a study of techniques for

the determination of parameters in mathematical models of the human
pilot. The study was conducted by Space Technology Laboratories under
NASA\Contract NAS 1-2582., Earlier compasny-sponsored research, initiated
in 1961, on the dynamics of the human operator in manual control tasks

provided valuable background which is also reflected in this report.

The study departs from conventional approaches wheve the pilot ' is
characterized by transfer functions or quasi-linear describing functions,
progressing into the domain of time-variant and nonlinear operations and
representative models of this type. The final portion of the study is
concerned with manual tracking in two axes where the operator is modeled

as a multiple input-multiple output system.

The emphasis has been placed primarily on development of compu-
tational methods and, hence, model matching experiments on synthetiec
pilots with known parameters were required. The resulting methodology
was successfully applied to actual pilot tracking data and provided new _
insight into the pilot's dynemic response. The experimental results
are presented in the report. A part of the study was devoted to the
comparison of continuous and iterative parameter adjustment methods.

In addition, significant anslytical results were derived pertaining
to the nature of parameter optimization by the gradient method. The

report concludes with a recommendation of areas for further study of

w’t’i’”

mathematical pilot models.

ii
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INTRODUCTION

An important problem in the design of aircraft and manned space
vehicles is that of describing the dynamic response of the hﬁman_pilot
mathematically. Numerous previous studies have had the objectives of
expressing the pilot's input-output characteristics in quantitative
terms. The technigues employed in these studies limit the tasks that
can be considered to a class of manual operations where the pilot re-
sponse can be approximated by a linear time-invariant system having a
single input and a single output. However, in many situations of prac-
tical interest the pilot acts as a multiple input, multiple output sys-

tem, and his response is essentially time-varying or nonlinear.

The purpose of this study is to examine new techniques for ob-
taining mathematical models of the human pilot that permit a departure
into the regime of time-varying and nonlinear operations and into multi-
axis control situations. Ideally, the methods to be investigated should
allow incorporation of known mechanisms of humen performance into the
mathematical model so as to make maximum use of existing knowledge. The
methods should also provide a means for continuously monitoring pilot
performance in the process of determining optimum model parameter values.

The basic strategy used in the model matching procedure is optimi-
zation of parameters by a steepest descent method or by related methods
of finding the minimum of a suitably chosen criterion function. This
optimization may be performed by a continuous or by a step by step
procedure . Both techniques have been the subject of investigation in
this study.

To develop these techniques and to explore their applicability to
model matching of human pilots in the larger class of operating condi-
tions described above, the research study was subdivided into four
parts. The first part was primarily concerned with developing the model
matching approach and suitable computational strategies which were ap-
plied to the case of single axis manual tracking. The tracking task
performed by the operator was chosen so as to emphasize linear and time-
invariant performance. After test and validation of the model matching
technique in this relatively simple first task, the study progressed to
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the more complex tasks of time-varying, nonlinear, and two-axis

tracking.

In each of these 1lnvestigations the computer approach of model
matching was tested on systems with known sets of parameters to ascer-
tain accuracy of results. Each phase of the study concluded with
matching of human operator's tracking data. The experimental results
are presented in Section 6 and Appendix A of this report.

A review of the experimental procedures employed and the various
computer programs implemented during Part 1, 2, 3 and 4 of the study
is presented in Sections 3 and 4. Significant analytical results
regarding the nature of the model matching process were obtained and
are presented in Section 5. The analytical results include:; a deri-
vation of properties of the criterion function used in model matching
and of the gradient of this function; an explenation of the dynamics
of parameter adjustment in terms of stability, convergence, and param-
eter interaction; and an analysis of the relative precision of parameter
determination.

Section T presents conclusions derived from the results of Parts 1.
through -4 and recommendations for future study of mathematical pilot's
models. Appendix B presents a detailed comparison of the continuous
parameter adjustment techniques used in this study with the techniques,
based on transfer function notation, which have been used by Whitaker (1 ),
Adams (2 ), and others.

The use of analog rather than digital computation was motivated
by economy of operation, flexibility of experimentation, ease of proc-
essing of pilot output data in analog form, and the convenience offered
by the analog computer in operating on a real-time basis. The relatively
simple analog computer impleméntation of the techniques in?estigated

offers advantages for use in the laboratory or in field applications.
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MODEL MATCHING TECHNIQUES OF PARAMETER TDENTIFICATION

Historical Background

Previous investigations of the dynamic response of humen operators
have been based on one of three general techniques, Fourier analysis,
spectral analysis or model metching techniques. The methods based on
spectral analysis and Fourier analysis have been well documented in |
the literature (3) and will not be reviewed.

Early model matching studies have been based on visual matching
of the time response of an assumed model and that of a pilot in a
specific control task. This operation requires manual parameter adjust-
ment on a trial-and-error basis. Such a study was performed at Goodyear
Aircraft Corporation (4). Two studies in the literature on human opera-
tor models have used automatic techniques for the adjustment of the
parameters of an assumed model. Ornstein (5) applied an automatic
technique for determination of parameters in an assumed linear model
of the human operator. The method used has been described by Graupe
(6) and consists of adjusting parameters in such a way as to minimize a
particular error called the "equation error." Wertz (7) has applied
the "learning model" or "output error" technique described by Margolis
(8) to adjust automatically the parameters according to a specified
criterion. Humphrey and Bekey (9,10) extended these methods to the
determination of parameters in nonlinear models. Studies by Elkind
and Green (1) have represented the human operator by means of a linear
model composed of a set of filters whose impulse responses are ortho-
normal. The filter outputs are weighted and summed to yield the out-
put. The weights are chosen to minimize the mean squared matching error
over & particular time interval.

The objective of this study has been to extend these earlier con-
cepts and to define and solve some of the problems inherent in the model
matching approach. The scope of this study only permitted the investiga-
tion of the output error method and was limited to operations involving
compensatory tracking tasks. A further broadening of the program in
future model matching studies to include pursuit tracking tasks as. well

would be most desirable.
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Statement of the Problem

The methods of parameter optimization considered in this research

are based on the comparison of performance of an assumed mathematical
model with that of the human pilot, as indicated in Figure 2-1. An
automatic parameter adjusting strategy must be selected which determines
the optimum values of the model parameters, in the sense that the model
performance approximates as closely as possible the human pilot perfor-
mance. It can be seen that the mechanization of techniques of this
type involves three primary considerations:
(a) A mathematical model must be selected and the adjustable
parameters fully identified. The evidence available in
the literature on human dynamic response provides Jjustifi-
cation for the selection of a second order differential
equation as & model for the operator's performance.

(b) A criterion function must be selected which can serve as

an index of the validity of the mathematical model. Mini-
mization of this criterion or performance function by ad-
Justment of model parameters results in the closest possible
agreement between pilot output and mcdel output.

(¢) An automatic technique for performing the required parameter

adjustments must be selected.

This section presents a brief discussion of the rationale which
underlies the selection of the type of criterion function used in the
experiments and to present three different adjustment strategies which
were employed. The results obtained with these strategies are given
in Sections 5, 6,and Appendix A.

Choice of Performance Criterion

The criterion which compares the performance of system and model
must be selected with care. Consider first the mathematical descrip-
tion of the model and pilot behavior. Dynamic systems are described
by means of differential equations. A system of order n is described
by a single nth order differential equation or by n first order equations.

Thus a model of order n and having m parameters a& can be described by
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*
the set of egquations
By = £, (Zl’ 2, 1eeeZ3 05 0, O, ;...Oﬁ) (2.1)

i=l, 2, Y ¢

The z; can be considered to be the corresponding time derivatives of

the model output, viz.,
VA T em— (2.2)

Time t appears explicitly in Equations (2.1) since the model output
also depends on the time dependent input x. To completely characterize
any dynamic system a set of initial conditions is required in addition
to the system equations and these are given by

zi(O) = ¢y i=1,2, ...n (2.3)
where cy represents the value of the ith derivative at the initial
time. Since the set of variables zy provide a complete description of

model behavior at any particular time, they are commonly referred to as
state variables. The variables z; may also be considered as components
of a state vector z. Similarly the m adjustable parsmeters @, Csy "'Oh
can be considered the components of a parameter vector & The set of
first-order differential equations described by Equation (2.1) can then

be stated as a single vector differential equation
z="*F(z, t, a); z(0)=c

where ¢ represents the initial state of the system. The model matching
problem consists in selecting a particular parameter vector Q such that
the model response approximates as closely as possible the response of
the human pilot.

The state of the system to be identified, in this case the human
pilot, can be denoted by means of the vector y. However, whereas the

order of the model represented by z is assumed (in Equation 2.1 the
order is n) the system to be modeled, represented by the vector ¥,

*
For explanation of symbols see the Glossary on page 162.
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is of unknown order and may in fact be only partly deterministic.
The problem of formulating a performance function is one of
determining a distance between the vectors z and y. In order to
qualify as a distance function or metric in a function space, the
criterion function must satisfy certain properties. A typical
criterion function may be formulated as
T

F = vy (t) -2 (@, t) 2 at (2.5)
/| ]

0]

where z. and y represent the output positions of the model and pilot
respecti#ely. ‘It is important to note that the criterion function F
is an ordinary function of the parameter vector Q. That is, a selec-
tion of particular values for the parameters will result in a given
number for the criterion function upon evaluation of the definite
integral in Equation (2.5). Using this criterion function the para-
meter optimization problem can proceed on the basis of ordinary cal-
culus by determining the maxima or minima of functions. On the other

hand the instantaneous criterion function defined by

£ = %[yl(t) -2 (3, t)] 2 (2.6)

depends not only on the parameter values but on the entire time
history of the model output and consequently represents a functional
whose maximization or minimization is the concern of the calculus of

variations.

Possible Adjustment Strategies
The three parameter adjustment strategies employed during this study

plus an additional strategy developed but not proven experimentally,
can be visualized conveniently with reference to Figure (2-2) which
illustrates contours of constant criterion function F in a parameter
plane determined by the two adjustable parameters al and o%. Parameter
optimization begins with an arbitrary initial set of values denoted by

& (0), as indicated in the figure, and proceeds automatically to the
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particular value of the parameter vector which minimizes the criterion

function.

Four possible paths are illustrated in Figure (2-2):

(a) Path 1 proceeds from the initial position along the gradient

(v)

vector, i.e., in a direction always normal to the contour
lines, and terminates at the minimum value. This is the
path known as "path of steepest descent." (See Dcrl.12).

The adjustment strategy is based on choosing a rate of
adjustment of the parameters which is proportional to the
negative of the gradient vector;

Q= -K YF (2.7)
where K is a positive constant.

This equation corresponds to the two scalar equations

: OF

T e
{2.8)

o OF

o = K S0,

At the minimum of F the gradient as well as the rate of
change of the parameters approach zero and the solution
becomes stationary. '

The steepest descent path can be approximategiby straight
line segments by means of an iterative procedure which
adjusts the parameter vector in a series of discrete steps.
(See Ref.13). Thus beginning at the initial value & (0)
the components of the gradient

__ _ (o) - (0) - (0)
TF@E@ )= [Qaﬂ%l__), ag_(gz_))] (2.9)

5(0)

Using the gradient at o a discrete parameter change

vector can now be computed by means of the relationship

- 0
Do () | X UF (@ ( )) (2.10)
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and the process is repeated. If the steps are sufficiently
small path 2 can be a good approximation to path 1 in
Figure (2-2).

Path 3: The major disadvantage of the computational

strategy involved in path 1 is the need to compute the
gradient vector at each point. In order to implement Equation
(2.10) it is necessary to compute and store all n components
of the gradient vector. This procedure requires either n
computer circuits operating in parallel in order to obtain

all n components of the gradient vector, or n memory cells
which can be used to store the components when they are
computed one at a time. Methods of computation of the gradient

are discussed below.

Path 3 is an iterative technique based on cyclical paremeter
adjustment. Assume that the initial value of the parameters
is again given by Q (O) Now compute one compoment of ihe

gradient, say

3 F(& (0)

°9

then the parameter &, only is adjusted to yield
de

Qi(l) _ Q&(o) X §%§Q§I£821 (2.13)

and the new parameter vector @  is defined as

5 (1) =[01(1)., o[2(0), a3(o), ....an(o)]
[a® a®, 0@, e ®]

Parameter az is now adjusted to yield the next point in

the parameter space, etc. The process is continued until

(2.12)

(2.14)

the nth parameter has been adjusted and then the cycle is
repeated.
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(d) Path L is obtained by a so-called relaxation procedure
which consists of adjusting each parameter in turn until
the performance function is minimized with respect to that
parameter. With reference to Figure (2-2), if the relaxa-
tion process is begun by adjustment of parameter al this
paremeter is adjusted until the path reaches a relative
minimum. At this point o is held constant and adjustment
is switched to a, until a new minimum is reached. The
process is repeated in this manner.

In the experimental studies of Phase 1 the cyclical or iterative
technique of path 3 and the relaxation method of path 4 were instru-
mented by means of an analog computer using the criterion function of
Equation (2.5). Path 1 was approximated by using & continuous param-
eter adjustment procedure bé.sed on & minimization of the time-depend-
ent criterion function given in Equation (2.4). However, the gradient
of the latter criterion function is not strictly defined when the
parameters are varied and consequently this adjustment strategy may
be considered an approximation to a continuous steepest descent path,
with the degree of approximation being dependent on the rate of change
of the parameters. The nature of the approximation and the resulting
path are discussed and illustrated in Section 5. Some of the mathe-
matical considerations involved in the formulation of the adjustment
strategies and their effect on the convergence and stability of the

process are also discussed in Section 3.

Computation of the Gradient

Two different methods were used for the computation of gradient com-
ponents OF/d ,. The iterative strategy denoted by path 2 in Figure
‘2-2 was based on computation of components of the gmdient from the

relation

o3 ) ae®, o ® L, 0 ® pa, o B e a0
Q0 A

(2.15)
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where the subscript k represents the computation of the kth itera-
tion. Clearly this computation requires either the use of two parallel
mathematical models, or some form of data storage to permit computa-
tion of the finite differences AF(G (k))

The continuous or approximate steepest descent adjustment strategy
was based on the computation of components of the gradient vector by
means of the method of influence coefficients (14). This method is
discussed briefly in Section k.

Formulation of an Assumed Mathematical Model of the Human Pilot in
Single Axis Tasks
The parameter optimization techniques described in the preceding

paragrephs are based on the formulation of a model equation suitable
for representing the unknown system. A finite number of parameters
are to be adjusted in the model to minimize a particular criterion
function. The rationale used here for postulating a general model
structure conforms to the approach commonly used in engineering
analysis, namely to formulate the model equation on the basis of past
experience and observation of typical input-output characteristics.
The extensive work on human dynamic response reported by McRuer
and Krendel ( 3 ) suggests that in many single axis tracking tasks,
human operators may be characterized by a quasilinear describing

function of the form

. K (1 + jary)e 94"
B(0) = 3 JaT, (1 + )

(2.16)

3 and v are parameters which depend on the forcing
function bandwidth and on the controlled element dynamics. It has
been shown that when the forcing function contains negligible energy
above -.75 cps, the describing function (2.16) may represent as much
as 80 - 90% of the total power in the operator's output. Consequently,
the form of (2.16) was suitable for the single axis models used in
this research. However, since 1 is typically very small in continuous

tracking (1t = 0.15 sec) and since a number of experimental difficulties
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are encountered vwhen attempting to match a pure time delay, the
term T was set equal to zero, and the following human pilot
model was formulated

Z+ g+ Q= oz3x + o x (2.17)
where x is the pilot (and model) input and z is the model output.
This equation corresponds to (2.16),viz.

%, e}
K= —, Tl-- 3 , and T_, T, are the roots of
oy, 27 73

oo

1.2 &
A
2 2
The model was formulated as a differential equation (rather than
a describing function) in order to make possible a direct extension
to the time-varying and nonlinear case. This model is similar to
the one employed by Adams (2) with the exception of the denominator

term. The STL form allows for two complex roots, whereas Adams'

s+ 1)

model 1is restricted to two identical real roots.

2.6.1 Extension to the Time-Varying Case
The model of Equation (2.17) can be used to represent directly

linear invariant and linear time-varying cases of human operator
response. In the former case the human pilot is assumed to behave in
an approximately stationary manner. 1In the latter case, the controlled
element dynamics is time-varying, thus inducing time variation in the
pilot's response. The same model form was used in both cases and time
variations in the a's were investigated. The results of these studies

are reported in Sections 5 and 6 below.

2.6.2 Extension of the Model to the Nonlinear Case
The model structure was modified to include nonlinear terms
primarily to test the applicability of the model matching techniques,
rather than as a valid hypothesis of human dynamic response in the

‘given tracking situation.

Two representative nonlinearities were selected for the model:
3

namely, a cubic term.f.(x) = x° and a deadzone temm
1 4
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X - O, X > O
Xy = fz(x) = o , if I1x) £ % (2.18)
X + O, x < -0

where ag is a positive constant. These nonlinearities were selected

for two reasons:

(1) They represent two important classes of nonlinear behavior:
fl(x) is an analytic function of x while fz(x) has slope
discontinuities. It was necessary to test the model matching
techniques with both types of nonlinearities.

(2) fl(x) and fz(x) represent behavior similar to that observed
in human tracking records. fl(x) is an amplitude-dependent
gain characteristic which corresponds to a "hardening" or
"softening" spring. fz(x) corresponds to threshold phenomens
which are known to occur in tracking. In addition, an ampli-
tude limiter was used in some experiments as & third form of
nonlineér>response.

The human operator was assumed to behave as a second order non-

linear system governed by the equation

*e > —_ * 3
¥o+ad+ay=ak, +ax, +ax (2.19)
where X3 is the output of a deadzone of width 2&6. Furthermore, the

system output y is subject to amplitude limiting at a level a7. The

model was of the same form as (2.19) and had 7 adjustable parameters

Ay gy oee O

Formulation of a Two-Axis Model of the Human Operator

Extension of Single-Axis Model i
As a straightforward approach to formulating a two-axis model

of the human operator for the purposes of this study, a direct
extension was made of the single-axlis model discussed above. A
symmetrical two-axis tracking task was selected in which the excursions
of the controlled element are assumed independent of each other.
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The human operator's response to vertical and horizontal error
signals was expressed in terms of two uncoupled, second order linear
differential equations.

For the vertical axis:

Iyt By Vg + 8y ¥y 5 a'3v Xty Xy (2.20)

For the horizontal axis:

'fgr'h tan o ta, vo= By Xy * Oy xh (2.21)
where xV and Xy are the vertical and horizontal deflections of a dot
on an oscilloscope display, i.e., the inputs to the human operator.
In accordance with earlier notation the model differential equations
used to match the human operator output Vo ¥, are written in terms
of z, and Zy with unknown coefficients aiv and aih’ e.g.

'z‘v o év to, 7 = a3'V‘ X+ 0y 5(v (2.22)
(The subscripts v and h will be omitted subsequently where no mis~-
understandings can arise.)

The controlled element dynamics did not contain cross-coupling
between axis, hence the operator's responses in each axis can be
assumed as essentially independent. This initial assumption is
supported by the results of a symmetrical two-axis tracking experi-
ment conducted by Humphrey (15). However, the possibility of cross-

coupling in the operator's responses must also be considered.

Cross-Coupling Effects

The integrated display of two tracking error components on the
display screen, and the integration of two-axis control into a single
fingertip controller introduces & problem in the interpretation by the
operator of visual stimuli and kinesthetic feedback. When observing
the displayed tracking error in two dimensions the operator probably

does not consciously resolve the error vector into cartesian coordinates,

X ¥ when manipulating the control stick. He may actually interpret
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the display error and the stick deflection in terms of polar coordi-
nates (see Figure 2-3). The displacement element expressed in polar

coordinates r and gﬂ is obtained by a linear transformation of the
cartesian elements dxv, dxh

dr = ax cos¢/ + ax sing/
rdg= dx sing + ax_cos ¢/

(2.23)

Xy

Figure 2-3

Resolution of Coordinate Changes on Display
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The operator could not perform this resolution (or its inverse) with
precision even if he knew the individual deflection elements. This
suggests that there are interactions in his responses to error stimuli
regardless of whether they are perceived in terms of cartesian or polar
coordinates. A further complication stems from the fact that a finger-
tip controller of the type used in this study (see Section 3) does not
provide a clear "proprioceptive" feedback of stick deflections in the
horizontal or vertical sense., Hence the operator's control deflections
in the two axes contain inevitable interactions.

2.7.3 Mathematical Model of Cross-coupling Effects

On the basis of these considerations it is reasonable to expect
unintentional cross-coupling of varying degree to exist in the tracking
responses of the operator. The model equation (2.22) should therefore
be modified as follows for the vertical channel:

zv+al zv+c:rzzv+B:L zh+B2 2, + 71 z, 2y

N

(2.24)

SOg X, + O X 4By Xy +B Xyt )2 X Ny

and similarly for the horizontal channel. The additional, underlined
terms on the left and right hand sides of the equation are the various
types of cross=-coupling having unknown coefficients Bi and i’i'

The following distinction is made as to the sources and form of
the cross-coupling terms added to the equation: The effects of the
excitation signal x, or its derivative will be termed perceptual or
input cross-coupling. The effects of the variable zh will be termed
motor or output coupling. The terms may appear in linear or nonlinear
form. The latter case may occur under conditions where a heavy task
load occurs simultaneously in both channels and causes a deterioration
of manual control action with unintentional response in the wrong chan-
nel. The coefficients 51"31 are used to denote these different coupling

phenomena as follows :
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Output Input
(Motor) (Perceptual)
Linear Py By 53, By,
Nonlinear 7, T,

As will be discussed in Section 6 some experimental computer
runs were included in this study to detect the presence of cross-
coupling in the operators' performance and to observe, if possible,
a quantitative improvement in model matching by the introduction of
individual cross~coupling terms.

For further study of these phenomena it would be of great
interest to introduce display cross-coupling artificially,e.g.

¥y =T
: (2.25)
xh =xh+m2xv

and to retrieve the coefficients m,, m, in the operator's response
by model matching techniques. It would also be of considerable
practical value to study control tasks which are essentially asymme-
trical and exhibit inherent coupling phenomena. Such tasks probably
tend to induce reverse cross-coupling in the operator's responses

after the operator has learned to cope with this situation.
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EXPERIMENTAL PROCEDURE

General Approach

The philosophy of model matching in this study is based on the
"output error method" illustrated in Figure 2-1. The same input
signal is applied to the human operator and to an adjustable mathe-
matical model. The outputs of model and operator are compared and
the output error is used in generating an appropriate performance
function. The parameter adjustment program utilizes the performance
function and computes the parameter changes required to minimize the
performence function. The input and output quantities were obtained
by having the human operator perform a simple closed loop control task
as depicted in Figure 3-1. This task performed by the operator is common-
ly referred to as a compensatory tracking task, i.e., a signal propor-
tional to the tracking error is displayed to the operator who in response
produces corrective actions by means of a hand controller.

An analog computer was utilized for generating the input signels
simulating the controlled element, and driving the display during the
experiment. The analog computer also performed the parameter optimi-
zation process. Most of the model matching experiments used the con-
tinuous parameter adjustment technique which requires only conventional
analog computer programming. The iterative parameter optimization tech-
nique was instrumented on an iterative anslog computer with provisions
for independent control of the operating modes on each integrator, per-
mitting the use of any integrator as & track-and-hold channel. The
details of the computer implementation for each technique are given in

Section L.

Description of the Tracking Task

Experimental Arrangement

The tracking tasks performed during each of the four phases of the
study were similar. The pilot was seated in a fixed-base cockpit shielded
as much as possible from external disturbances. Figure 3-2 illustrates
the cockpit used in the experiments. Changes in the tracking task re-
quired for different phases of the study are described in Sections 3.3 -
3.6.
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y(t)
r(t) x(t) Controlled System
Hand ontrolle
Noise Filter Display Oﬁgzzzor Contrllc Blemont Output
Generator P ontrLire Dynamics
- G (s)
Figure 3-1
Tracking Task of the Human Operator
TABLE 3-1
Human Operator Tracking Tasks
Phase T Phase II Phase III1 Phase IV
(Linear (Time (Non- (Two-
Invariant) Varying) linear) Axis)
Type of Input Random Random Random Random
Disturbance r(t) Noise Noise Noise Noise
Filter 50s . 20 _, Same as Lo
G(s) (10s+1) (s+1)° (28 + 1) Phase I (bs + 1)°
(both axes)
Controlled
Element
Dymanics
6. (s) 12.5 Variable 10
1 s(s+l (see | . 5(S+L)
Section Same as
Gy(s) 12.5 3.4) Fhase I (both axes)
Sz
G3(s) 12.5
s+l
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Display and Control Configuration

A 5" oscilloscope having a reticle calibrated in 1 centimeter
units was used as display instrument. The tracking errors were in-
dicated by proportional displacement of a dot from the center of the
oscilloscope screen. A three-degree-of-freedom spring centered finger-
tip controller used had a lever arm of approximately h-1/2 inches and
a maximum angular deflection of + 30 degrees in horizontal and vertical
direction. Horizontal and verticel stick deflections, Y and Yy and
corresponding oscilloscope displays, X,» X, were activated as required
for single or two-axis control tasks. The controller exhibits negligible

inertia and damping and was used as a position controller.

Input Disturbance

Low frequency Gaussian noise generators were used as sources of the
input disturbance signal, r(t). The output noise had a power spectral
density, N_ = 2.41 voltsz/cps at zero frequency, the power spectrum was
flat up touapproximately 100 rad/sec. This noise was fed through a low-
pass filter to obtain desired input signal characteristics. Different
filters were employed as required for each task of the study. The
characteristics of the filters are given in Table 3-1.

Controlled Element Dynamics

Three simple controlled element configurations were simulated on an

analog computer and utilized in the experiments. These configurations

are described by

[}

Gl(s) s (s +1 (3.1)

6,(s)

il
[AV]

G3(s) s (8 +1)

Values of the gains employed are listed in Table 3-1.
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Recording of Data

In order to apply identical experimental data to several model
matching strategies for purpose of comparison, it was necessary to
record the input signals and the human operator responses in a variety
of experimental situations, and to use the recorded information subse-
quently as input to the computer progrem. These signals were recorded
on a Precision Instrument Company M magnetic tape recorder, appropriately
coded for each experiment. Voltage pulses which served to control the
analog computer were recorded simultaneously on an adjacent track.

Operation Instructions and Training

In order to obtain approximately invariant tracking performance, the
two subjects were given extensive training sessions for both the single-
axis and the two-axis tracking tasks before any data were recorded.

After proficiency and consistent performance in one axis tracking had
been demonstrated, an additional period of one hour (12 five minute
tracking runs) was devoted to training in the two-axis task. The impor-
tance of adequate training was pointed out and quantitatively demonstrated
in a two-axis tracking study by Humphrey (15). The operators were in-
structed to achieve and maintain minimum display error, as measured by

the distance between the dot and the center of the scope. They were

also instructed to avoid excessively large and rapid control stick de-
flection as much as possible. Data taking was initiated only after the
operators had acquired reasonable tracking proficiency.

Experimental Procedure - Task 1l: Linear Invariant Models

The objective of this task of the experimental study was to examine
different model matching techniques and select those most promising for
subsequent tasks. Four methods were considered, the so-called "contin-
uous,” "sequential," "iterative," and "relaxation" processes discussed
in Section 2.4. The continuous, iterative, and relaxation techniques
showed sufficient promise and ease of implementation and were therefore
implemented on analog computers as described in Section 4. The results

of these tests are presented in Sections 5 and 6.
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Each method was tested for convergence and stability by first
matching the parameters of a known system, i. e. a differential equa-
tion identical to the model but having known paremeters. After
passing this test, human tracking data previously recorded was applied
to each method. Parameter values were obtained and compared for con-
sistency. During this phase of the study, only the basic stability
and convergence of the methods were investigated.

Data characterizing the input disturbance function and controlled
element dynamics are given in Table 3~1. Two human operators were used,
each performing three runs with each oi' three different controlled
element configurations (a total of 18 runs). While nine runs for each
of two trained operators are not sufficient to establish the statistical
characteristics of the experiment, they form an adequate sample for
evaluating the feasibility of the parameter optimization methods.

Each individual tracking run lasted five minutes. From these runs
sample intervals of 30 secounds were
loops to supply input signals for iterative parameter adjustment as
described in Section k.

The same experimental data were used with each of the different
computational strategies in order to avoid ambiguities due to varia-

bility of human piiot performance.

Experimental Procedure - Task 2: Linear Model with Time-Varying

Parameters.

The emphasis of Task 2 was directed to the improvement of the
parameter tracking ability of the continuous method. Task 2 was
divided into three parts: optimization of convergence time to para-
meters in known time-invariant systems, convergent to time varying
parameters in known systems, and application of the technique to

human tracking.

Task 2-1

In order to gain & better understanding of the adjustment process
as well as to improve the system stability and response time, the
effects of parameter adjustment gain K and the rate compensation temm,
qé, were given primary consideration. These terms are described in

deteil in Section 4.
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Task 2-2

This task was concerned with the identification of a time-varying
parameter in the original system. A sinusoidal or square wave was
used to perturb the system parameter in question. The parameter ad-

justment circuit of the model system tracked the parameter perturbations.

Task 2-3

In this task the model matching technique was applied to identifi-
cation of human pilot model parameters while the pilot performed a time
varying single-axis tracking task. The controlled element, or plant,
was made time-variant by the following time sequence: For the first
two minutes of a five minute run, the plant was described by the diffe-
rential equation

B+ b= 20y
or by the transfer function

20

P
Y s (s + 1)

During the third minute of the run the gain was increased at a constant
rate for 10 seconds until it reached a value of 45. This value of gain
was held for one minute and 50 seconds. During a subsequent 10 second
interval, one coefficient in the plant differential equation was changed

at uniform rate according to
P + (1L -0.1t) p = b5y

After ten seconds, the plant transfer function was thus given by

coln

P .
Y

[o)]

and these characteristics were obtained for 50 seconds. After a total
elapsed time of four minutes of tracking, the plant was again returned
to its initial state and remained in this condition for the final S0
seconds of a five-minute tracking run. The same program was used in four
runs by two operators. As in Task 2-2, the data was recorded on magnetic

tape and subsequently analyzed by the continuous model matching method.
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Experimental Procedure - Task 3: Non-Linear Models

The first part of the experiments was concerned with verification
of the convergence of the nonlinear parameter adjustment technique
described in Séction 4 of this report. The technique of matching the
system to a nonlinear model with known characteristics was employed.

Methods for implementing influence coefficients of analytic non-
linearities had been discussed in the literature previously (14). How-
ever, no such background was available for non-analytic nonlinearities
and the required computer circuits were developed and tested.

The second part of the study was concerned with the effect of
additive noise on the performance of model matching techniques. The
same system as in Task 1 was used, but the output of the simulated pilot
was defined as

y' =y +ecn (t)

where n{t) is the output of a Gaussian noise geunerator and ¢ i3 a
constant. This noise simulates random fluctuations of the operator.

The third part of the study was restricted to application of the
results of the first phase to human tracking data previously obtained.
The general approach, the display and control configuration and the
controlled element dynamics are described in Section 3.2 and Table 3-1.
Since a unique solution could not be obtained for all seven variable
parameters of the nonlinear method, the linear parameters were first
adjusted and then held constant while improvement in the error cri-
terion was attempted by varying the parameters associated with the

nonlinear terms.

Experimental Procedure - Task L: Two Axis Tracking Tasks

A block diagram of the two-axis control system is illustrated
in Figure 3-3.

Two uncorrelated random excitation signals r, and ™ activating
the vertical and horizontal channels, respectively, were generated
by two separate noise generators, each having a zero frequency spectral
density No = 2.41 volts?/cps and a flat power spectrum from zero to

approximately 100 rad/sec. The input signals, the controlled system
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dynamics end filters employed are given in Table 3-1l. The two axes

of the control task did not include cross coupling. The displayed
quantities x (vertical deflection on the scope) and X, (horizontal
deflection) as well as the operator's output signals Y, (control
stick vertical position, normalized in terms of full stick deflection)
and y, (control stick horizontal position) were recorded on magnetic
tape for repeated use. Sufficient tracking runs were performed to
study the feasibility of the model matching techniques, but extensive
coverage of operator characteristics was not attempted.

Two human operators performed three tracking tasks each with three
repliéations: 1) single axis tracking in horizontal direction, 2)
single axis tracking in vertical direction, 3) two-axis tracking.

All runs were of 5 minutes duration. The mean squared values of
excitation signals, ;;E and ;;E, displayed errors ;;§ and ;;E, and
operator output, §:2'amd ;:E were recorded for each run.

A mathematicaz model ;as fitted to the human operator data by means
of the continuous method described in Section 4. Data obtained from
two-axis tracking was analyzed separately and model matching was per-
formed individually for each of the two channels. Repeated model
matching runs of the same recorded data were required in some instances
to minimize interactions between parameter adjustment which occurred
when starting from arbitrarily chosen initial parameter settings. This
procedure was found necessary to provide dependable parameter values
for subsequent evaluation of the dependence of adjustment gains,
damping terms, and cross-coupling terms on the model matching performance.

In order to be able to evaluate the adequacy of the model, the mean

square residual matching efror,

was used as & "matching accuracy criterion."
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During the search for cross coupling B in the model (see
Equation 2.24) the coefficients o were held fixed to avoid interaction
between the adjustment loops. The model parameters of the uncoupled
system were held near their optimum values during attempts of finding
a8 further improvement of the matching criterion by the introduction
and adjustment of various cross-coupling terms.

Off-line model matching procedures involving the repeated use of
taped operator tracking data were necessary(l) in order to minimize
computational complexity and (2) to provide greater assurance of deriving
valid results. This point will be further discussed in Section 5 in

terms of the model matching results presented there.
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COMPUTER IMPLEMENTATION

Computer Programming for Continuous Parameter Adjustment

The continuous method of parameter adjustment described in
Section 2.l is related to similar techniques used by Margolis (8 ),
Whiteker (1), and Adams (2). It uses the parameter influence pro-
gramming technique developed by Meissinger (14%), Figure 2-1 shows
the computer implementation of parameter adjustment schematically.
Continuous adjustment of the parameter values from arbitrarily chosen
initial wvalues is effected by feedback signals generated by the com-
puter on the basis of the measured error criterion.

The criterion function selected here 1is

f = -;- (e +q &)2 (4.1)

where q is a constant and q e constitutes a rate compensation term.
Steepest descent requires parameter adjustment at a rate proportional

to the local slope of the error criterion function.
& =KYy£f , (4.2)

where K is a positive gain constant. The gradient components %—;— are
i
expressed in terms of the parameter influence coefficients -g—é— = U, of
' i
the model output variable z. Using Equation (4.1) one obtains

df .y (Oe de \ _ <\ 9z dz
a—ai' = (e + qe) (S'ai"'q _ﬁi) = (e +qe) (a—d'i+ q _a—ai) (4.3)

Since the order of differentiation with respect to t and ai can be

interchanged, if z is a continuous and differentiable function of
both variables,

d (92 _ O 9z -
Sa; 55 )" 3% Gk (-4

Thus Equations (%.2) and (4.3) can be combined to yield

4 =K (e + q€) (4, +4a ﬁi) (%.5)
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To determine parameter influence coefficients on a continuous
basis a set of additional differential equations must be programmed
on the computer as follows. By partial dffferentiation of the model
equation (2.17) with respect to o, the new equation

. b - .
32‘1 () + oy aal (2) +a, 250 (2) = -2 (4.6)

is obtained which reduces, by virtue of (4.k4),to

Uy +0) Uy +0p U = -2 (4.7)

where ul must satisfy the initial conditions

w (0) =0, ﬁl(o) =

since the initisl values 2z(0) and 2(0) are independent of .
Equation (4.7) known as sensitivity egquation must be solved
neously with Equation (2.17) to yield the parameter influence coef-

ficient uy and hence the gradient component %ﬁ§ .

1
The forcing terms x and x being independent of a do not appear

in (4.7). The other components é;; are obtained similarly by pro-

gramming and solving additional sensitivity equations with respect

to Qo) a3, ), - These equations are given below.

u, +ay U, + 0y Uy = =2 (%.8)
Eé + oy 63 + 0y uy = x (4.9)

1
b

uu + al U.h + az uu = (’4.10)
All initial values must satisfy the conditions u,(0) =0,

ﬁi(o) = 0. From these equations the following relationships

between u

and Uos u3 and u, can be derived as discussed in Section 5.6.

1

1 (4.11)

uh_-u,3
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The computer circuits for generating the influence coefficients
Uy, Up, Ug and u) are shown in Figure 4-1. The relations (4.11)
simplify the computer implementation. The simulation of the model
equation is shown as circuit 1. Circuit 4 representing Equation (%.2)

generates the parameter values A, Gy @ and ay, .

3

A mathematical problem inherent in this approach to gradient
computation is that the a& terms were assumed to be time-invariant.
Actually, under conditions of continuous adjustment of the coefficients
a, the gradient components can be determined only approximately, where

the approximation error depends on the rate of adjustment.

Determination of Parameter Influence Coefficients of & Nonlinear Model

Linearity and time-invariance of the model differential'equation
is not a pre-requisite for performing the gradient computation dis-
cussed above. However, in the case of time-variant or nonlinear dif-
ferential equations the structure of the sensitivity equations no
longer resembles that of the original differential equation as closely
and the computer programming becomes somewhat more complex.

The mathematical model of the pilot used in Task 3 includes three
nonlinear terms, a cubic of the input variable, a dead space character-
istic acting on the input variable, and a limiter acting on the output
variable as discussed in Section 2.6, (see Equation 2.19). Ignoring
for the moment the two "non-analytic" second and third nonlinear terms,
the parameter influence of the cubic term will first be derived. The

system equation then becomes

¥+ ali + 8y = a3§ reax a5x3 . (%.12).

and the model equation with adjustable parameters Qs Oy evey a5 is

given by

x3 (4.13)

2 +Q, 2 +azz =a3x +ahx +a5

1

To derive the sensitivity equation in Qs Equation (4.13) is differ-

entiated term by term with respect to as. Substituting u5 = a;
one obtains ' >
8 +au, +au, =x3 (4.1h)

5 15 275
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This procedure is essentially unchanged from the derivation of the

sensitivity equations for q. and Q) . The computer implementation of

3
Equation (4.14) and the parsmeter adjustment circuit for ag are illus-

trated in Figure 4-2a.

The dead space characteristic x; = fz(x; a6) represented by
Equation (2.18) will next be considered and the influence of Qg on z
will be derived where ag represents half of the adjustable deadspace

in X3¢ The parameter influence is defined by ug = . Differentiation

o2
1803
of Equation (2.19) with respect to a6 (where the cubic term has been de-
leted for simplification) yields the sensitivity equation

. . 3’.‘5 o Xy 2 3%
u6 + ozlu6 + a2u6 = Ot3 -a—a—é- + ah -éaz + 3Ot5 xd r;sz (h-l5)
3 ¥a
The term E;EE = gd(x) poses no problem conceptually, but exhibits jump

discontinuities at x = + Qc.

-1 x> ag
%a 0o if [x|< 4.16
Sd(x) = gag [x]< Qg (4.16)
+1 X < -C!6
R
The term 33 can be derived by interchanging the order of differ-
6

entiation with respezct to t and Qg provided the derivatives exist
everywhere in the range of interest. This is not the case at the Jjump
discontinuities of gd(x). To eliminate this difficulty a continuous
slope change over a small interval ASxT of the input variasble x at

X = i_a6 is introduced to assure differentiability. The deadzone char-
acteristics with rounded corners shown in Figure 4-3 is a good approxi-
mation of the ideal characteristic. It is actually a more realistic
representation of many threshold phenomena observed in practice, e.g.,
the pilot's threshold response. Figure 4-3 also shows the deriva-

tive gd(25 and the term required in Equation (4.15). Interchange

o *a
9%
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of the order of differentiation yields
3% 3x -mx during transition interval
—a1.4 (8.
Q. dt ‘o T T

0O elsewhere

The transition slope is given by

m = l/£>xT

As A;xT-ovo this representation of gd(x) at X = ag approaches the

jump discontinuity. During each transition interval the term
o x

34 introduces an impulse proportional to x with a large peak
6

(4.17)

(4.18)

amplitude ifA is short. The effect of such impulses on the output
Xp

ug of a damped second order system, Equation (4.15),is negligible

compared to the other input terms. Hence the sensitivity equa-

tion (4.15) is in effect approximated by

36 + a1d6 +aue = (o + 3 xdz) g4(x)

(L.19)

and is implemented on the computer in this form. The partial deriva-

tive gd(x) is represented simply by an on-off term controlled by a

relay plus dead space aé. The computer circuit for the adjustable

deadspace characteristic is saocwn in Fi mrc h-n,

Similar considerations apply in the derivation of the parameter

influence

7

characteriastic used in the nonlinear model.

o . \ v
oy z > “hy

by =< % i{ |/| < wY
-ﬂ7 A £ -a7
0 lz] > «

io=4 . if T
2 lz| o

= u7 where a7 is the saturation level of the limiter

(4.20)

(b.21)
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Adjustment by the method of steepest descent requires the formation
of U and 67. Equations (4.20) and (k.21) yield

‘ z > Q
u, = ! = if 2z < a? (4.22)
773 = 7 )
z < <
T
. 9y 4
Uy = 30‘7 =0 except at points z = + Qo (k.23)

As in the case of dead space the derivation of the term 67 presup~-
poses differentiability of z, (e, o.,). The problem is circumvented
by defining a transition interval Zq in the variable z at

zZ = i_aT. At each passage of the transition zone a z - impulse
occurs in u7 which can be neglected for practical purposes. A
sensitivity equation for u7 and u7 is unnecessaryf The generation

of u7 reduces to a simple switching arrangement

S
3
)
e

PYgure h-bY .

Extension of the Continuous Method to a Two-axis Model

The coefficients Qy , Bi"‘i ... of the two-axis model postulated
in Section 2.7 can be determined by means of the continuous model
matching technique developed for single axis tasks. For the purpose
of this study e sequential parameter optimization of two individual
"operator channels" provided a reasonable simplification, reducing
the number of parallel parameter adjustment circuits from 8 to 4
in the absence of coupling terms in the model.*

To further reduce the number of sensitivity equations required
for this task the approximations given by Equation (4 11)were used.
This permits the generation of the parameter influences ul and u,
by one computer circuit, and u3 and uy, by a second circuit. The
second parameter influence circuit can be eliminated entirely since

ug and u) are obtainable from the circuit which generates the output

*
Separation into 2 single-axis operations is justifiable since two
distinct error criteria
o 2
£, = i (e, +qe )" and f; =

. (2
1
2 (eh + q'eh)
‘have to be minimized individually.
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variable zl. This requires a modified computer circuit for 2z
similar to that used by Adams (.2). According to Equation (2.17)
z results from linear super-position of the two terms a3x and ahi.
On the other hand u, and uy, satisfy the equations

3
h'3 +al&3 + Gy uy =%
(k.24)
) 40y Uy +ay Y =X
Therefore,
2 =0y Uyt y, (4.25)

Equation (4.25) omits the minor effect of initial values in z

end z. The corresponding computer circuit is shown in the Figure 4-§
below.

The computer program for finding the parameiter influences of
cross-coupling terms Bl’ Bz, ... 1s derived by extension of the
above techniques., Using the notation

oz
653 = Ugg (4.26)
it follows from Equation (2.2 ) that uB3 must satisfy the sensitivity
equation
Ugg + @y Ug3 +Op Uggy = X (&.27)
X3
- Uy '142J—{“\
: i
o, L
"'{:_;>—""1___ u z
X RN U>_L_U> 4'; S
L - d,
x,
U.‘/ —0(4

Figure 4-5, sSimplified Computer Circuit for
%y u3:and uh
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Similar equations yield the parameter influence coefficients uBl

2
uBZ’ etc. These coefficients can be obtained from the same parameter
influence circuit as Uy Uy, by switching the forcing function in turn

from zv to x ... etec. The sensitivity equation for u

n *n’ "o 52
reguires the product vah’ as forcing {function while for qu a more

* )
complicated term (zv z, + 31 Zy ual) is required.

Computer Program for Iterative Parameter Adjustment

The iterative model matching technique was introduced to c¢ircum-
vent the mathematical difficulty associated with gradient computation
in the continuous adjustment technique and to minimize stability prob-
lems din the adjustment loops. ALL parameters are neld constan!. during
time intervals of gradient computuation, and adjustments are madec siep-
by=-step during successive resel periods. In addition, the previous

. o . . . A .
computer program for finding partial derivatives %;7; @ veplaced
L

by a program of finite difference approximaiions. The bluch diaorvan
(Figure h-¢) shows two models operating at slightly different settings
of one parameter. The first model yields the output signal z. The
second model solves the same equation subject to a variation ch% of
of the parameter ai yielding the output signal C'i' The partial deriva-
tive is thus approximated by

S 2 A7y z(oei) - z(ozi + Ao,i) z 'Ii

o = = 24».28
aai Ay Aoti A, ( )

This computer program requires separate circuits for eachlﬁc% to
generate the finite differences zﬁzi =% = ]’i. A considerable amount
of computer equipment can be saved by sequential operation which re-
quires implementation of the original unperturbed model eguation plus

one model equation subject to parameter variations A , one at a time,

i
The iterative meihod is prograrmmed. on the computer as follows.

During each iteration the differential equation of the model given by

(-
(2.17) is solved with fixed parameters a;“), viz .,
% +‘al(k) z + a?(k) 7 = G?(K) X + an(k) x (k.29)

e | |
“he second-order effects of coupling parameters in one channel upon
the sensitivities of coupling parameters in the second channel were
ignored.
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HUMAN ) 2 :
| oPerATOR { PARAMETER
EREOR ADJUSTMENT
' d@ﬂ?ﬂ?«”v
>-1 MODEL | Fa
| |
ELRDR FINITE LMEGEKEHVGE
CRITERION GRACIENT
APPROXIMATION
PERTURRBED ‘§
SRS OTOSERERE “. |

Moper

1

Figure 4-6. Block Diagrah of the Iterative
Parameter Adjustment Strategy

where the superscript (k) refers to the parameter values reached

after the kth iteration. The perturbed model equation is

:g. + {+ al(k) + A0y 51,3}38 + {O‘z(k) +Aa, 52,3} K

(4.30)
(k) . (k)
{a3 +A<71383’J x + {0y +Aah5h,j] x
1 ,1= i1 indicates parameter ay
The symbol Si = where B
»J 0,14 J indicates the step within

the kth iteration
denotes the selection of one out of four variations L;ai in solving
(4.30). The computer progrem is shown in Figures 4-7, 4-8, and
4«9, Circuits (1) and (2) are used to generate input quantities
ffom the tape recorder, the disturbance function, the human operator
output, and their derivatives. Circuits (3) and (4) are the model
and the perturbed model respectively (see Figure 4-T).
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The error criterion selected for this program has the form

T

F :/ (e, + é%) at (4.31)
0

In terms of human operator output and model output this may be

expressed by
T
F(a ) =/ [(= - v)2 + (5 - 5:)2] at (%.32)
o}

On the other han¢. the error criterion involving the perturbed

model output is

T
~ 2 ( 2 A
Flo, +Aay) =/ [((,i -¥)T ALy - ) ] dt (L.33)
0
This the finite difference quotient AF a
- A,
) i
m m
- 2 L . 2 X e 2 . . 2“’-
/ [( Ci'y) + (Ci'y) Jd’c-/ l_(z-y) + (z-y) Jm; (b.3W)
(k) 0 0
Qr(r) =
Zxai

This quantity is computed by circuit (5) (see Figure 4- . ).
Circuit (6) is a memory circuit which stores successive values

(%)

of . , viz.

a:z,(k+l) O"i(k) +A"")":‘:_(R) - “;i.(k)“‘ € Q) (8.7
A constant step size Z}cékzas used in all successive computer runs.
This step size is equivaient to the adjustment gain K used in the
continuous model matching technique., Circuit (7) generates the
switching logic fcr the Zlai(k). The four outputs of the circuit

are energized cyclically to adjust the parameters step by step.
Circuit (8) controls the computer in accordance with a previously

recorded mode control signal (see Figure L-9).
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Relaxation Technique

The relaxation technique employed in this study was simplified
greatly by eliminating the automatic parameter adjustment loop. It
only requires the implementation of one model equation and an error
criterion function which is minimized by manually adjusting potenti-
ometers. The method employed is described in Section 2.% . The com-
puter diagram is shown in Figure 4-10, Circuits (2), (3), (5) and
(6) are input gain circuits and derivatives, respectively. Circuit (7)
controls the modes of the computer.
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’ 5. ANALYTICAL RESULTS

One of the objectives of this research program has been the clari-

lcation of some of the theoretical problems connected with model match-

e

C

A%

d:

1)

2)

3)

ing technigues. Among these problems, the Tollowing examples can be

it

Ornstein ( 5,1€ ) has noted that the model parameters do not
necessarily converge to correct values, even when a model is
matched to a known system, and that iteration may be requircd
to improve the reliability of the computer results.
Cross-coupling or interaction among parameter adjustments has
becn observed by Margolis (8 ) and by Adams ( 2 ), and sub-
stantiated by early STL results.

The dependence of the parameter adjustments on the choice of
criterion function has also been Kknown for some time.

Margolis (O ) used criterion functionsof the form

fl = e2 + qéz + rgz (v.1)
and
£, = (¢ + qe + ré’)z (5.2)

(where e is the output error or model-matching error
and q and r are constants) and he observed significant

differences in parameter adjustments when f_. was used

2

instead of fl and when g and r were given non-zero
values. Ornstein (5 ) used an absolute value Grror

criterion of the form:

with considerable success. However, this criterion function
was not suitable for models with certain nonlinearities,
and Humphrey and Bekey (L0) were {orced to abandon il and

return to a quadratic form.
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4) Iterative techniques of parameter optimization generally

use integrated error criteria, such as

T 2
Fl =J// e dt (5.3)

where T is a time interval during which the parameters
remain constant. It has been shown (13) that criteria
such as Fl make possible a discrete steepest descent
process. However, the use of instantaneous error criteria
such as fl, f2 or f3 with the output error method raise
fundamental problems regarding the definition of the local
gradient.

The four problems cited above have been considered under the
theoretical portion of the present study. Considerable effort was de-
voted to studying the nature of the criterion surface, the interaction
emong parameters during the adjustment process, and the effects of the
choice of criterion function on the convergence and stability of the
model matching process. The major results of these investigations

are summarized in the tfollowing paragraphs.

The Neture of the Criterion Surface for Iterative

Parameter Opiimization

Consider an iterative parameter optimization process with

T
F =/ (ef + 6%) at (5.4)
0

where the parameters %, Ay O and o, of Equation (2.17) are neld

3

constant for intervals of T seconds. Under these conditions F is an

ordinary function of the pasrameters, i.e.,
- a
F = F(Cll, az; 03, ah_) (),1&&)

and profiles of F as a function of any paremeter «, can be plotted by

i
holding the other three parameters constant, and evaluating F for a

sufficiently large number of values of ai to obtain a curve,
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An inspection of the characteristics of the criterion function in
the neighborhood of its minimum helps to explain the behavior of the
adjustment process at the approach to steady state. TFigures 5-1 to S5-4
show profiles of F(al, Aps O, ah) plotted versus one parameter at a
time exhibiting the minimum, with the other parameters held fixed at the
respective minimizing values, The curves pertain to the case of an analog
model of known parameters, rather than to a human operator and hence have
a deterministic character. One observes that the minimum with respect to
parameters a, and ah is quite flat, whereas the minimum is sharper in the
case of parameters Y and a3. This explains why the minimum-seeking proc-
ess yields well-defined parameters o and a3 and poorly defined values
02 and ah, and hence partly explains the difference in the statistical
variation of solutions exhibited in the scatter plots of experimental
data obtained in Phase 1 (Figures 6-1 to 6-3 ).

It should be noted that the profiles of Figures 5-1 to 5-U4 are based
on a known transfer function and not on actual human operators. Similar

contours can be obtained for human tracking data.

The Nature of the Criterion Surface for Continuous Parameter
Optimization Methods

In the iterative technique discussed in the preceding paragraph it
is possible to obtain contours where F = constant in the parameter space.
For example, Figure 2-2 in Section 2 shows a typical set of contour lines
in a parameter plane defined by two parameters al and az. Such contours
could be constructed by taking corresponding F values from the criterion
function profiles of Figure 5-1 (F vs. al) and Figure 5-2 (F vs. az)
and plotting the respective values of a4 and Qg In the case of continuous
parameter optimization a different approach will be used to analyze the
criterion function and its contours in the parameter space. The output
error € = 2 - y in the vicinity of the minimum is expanded in a power

series* in terms of the deviationszxxi,zyi of the parameters Q, o

J J

*

The discussion will be restricted initially to parameter adjustment in
two dimensions, assuming that all but two of n parameters have been
adjusted to, and are held fixed at their correct values.
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Figure 5-2.
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from their correct values, viz.,
~ ae ae

e ¥ 33, Aal+aai Aaj+"'+eres (5.5)
and since

. 9e _ 3z _ |

- = )
LA aai i

(1}]

u:l.Aai + ujAOt‘j + .0 + € (5.5a)

res

Higher than first order terms are neglected.

The term eres includes a collection of terms not dependent on &
which contribute to the instantaneous model matching error, such as
uncertainty in the structure of the unknown system equation, random

perturbations, computer inaccuracy, ctc.

Using the expansion of e by Equation (5.5), one obtains for the

error criterion

Ao, +e )P (5.6)

= 4
f = 2(ui Loy +uy 3 res
Therefore the contour lines f = const. are described by

(ui Aoy + uy Aaj + eres) =+C (5.7)

which is the equation of a pair of parallel straight lines in the

Aai’Aaj plane, (see Figure 5-5). A similar result was obtained
by Clymer et al, (16 ). The effect of € eg Will be ignored for the
moment , The contour lines intersect the axes Aai, Aaj at the points
C ,
Ai = _+_ E;— Do
(5.8)
Aj = :- a-g—
J
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and have the slope

m,o= - — (5.9)

Due to time-variation of uy and uJ the position and orientation
of the contour lines vary. Conditions of zero or infinite slope
occur whenever u; or uj, respectively, change sign. The criterion
function is zero when C = 0. In this case the two contour lines merge
into a single line passing through the point ZXai = 0, zsaj = 0, The
residual error term produces a parallel shift of the contour lines
without altering their distance; the contour C = O is shifted from the

origin by a distance

p = (5.10)

Since the criterion function is generated by the family of
parallel lines and since f increases in proportion with C2 it is re-
presented geometrically by a cylindrical surface with a parabolic
cross-section. This cylinder is tangential to the £>ai - A&aj plane
along the contour line C = O (see Figure 5-6). The time-variation of
Uy, u'j causes the cylinder to change orientation in accordance with
the rotation of the tangential line C = 0, In the absence of residual
errors the axis of rotation remains fixed being the f-axis of the 3-axis
system shown in Figure 5-6. With non-zero residual errors the instan-
taneous axis of rotation is shifted randomly but always remains paral-
lel to the f-axis.

The fact that the instantaneous criterion function f (ai, az...)
docs not form a bowl-shaped surface with closed contour-lines must be
noted here to avoid misconceptions as to the manner in which the de-
scent path is formed. If the criterion surface were time-invariant
a descent to the proper end condition Aai =0, Aaj = 0 would not be

assured. Instead, all descent paths would terminate on points along the
line
uiZin + ujASQJ =0 (5.11)

(or on a shifted line for € es #£0). Time variation of u,, u, and

177



8L 26~ 6006-RU-000

P
Figure 5-5 age 55

Contours F = const in Aai- Aa:j - Plane
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the resulting rotation of the contour line C = O around the point
Aai =0, Aoz'j = 0 assures convergence to the proper end condition.
With non-zero values of € es the intersection of successive contour
lines C = 0 shifts continuously, causing the descent path to move
randomly sbout the origin at distances which depend, of course, on
the magnitude of €es”

It is interesting to note that the rotating cylindrical cri-
terion surface may, under certain conditions, define a closed, bowl-
shaped envelope surface, such that in effect the steepest descent on
the cylinder becomes, in the average, a descent on the envelope surface.

This effect can best be illustrated in two dimensions by deriving
the envelope curves for the family of rotating contour lines in terms
ofﬂZ&o&,Z&aj coordinates. The envelope of the contour lines is ob-
tained from

H=1f - const. =0: n, Zl(xi + uiAoz.l ¥C=0
aH .A ) v o
Tt =0: 4fo + ujAaj =0 (5.12)
This yields the coordinates of the envelope
a,
Ag, = s¢—d— .
r uiuj - uj ui
. (5.13)
- ]
ACZ = +C —'.—_—""“ .
Jg u.u, - u, u,
i7J Jg 1

Consider for example the parameter adjustment of a3, A, in the case
of sinusoidal excitation, which is characterized by influence co-
. *
efficients ), = A sin wt and u3 =y, = A wcos ot . Introducing these

terms into Equation(5.13) yields:

C
AGBE = m— cos wt
c . )
AauE = T sin wt (5.1’4)
where Cz = 2f
*
The functional relation u3 = dh will be further discussed in

Section %.6.



8426-6006-RU-000
Page 57
The envelope surface represented by Equations (5.14) has elliptic
cross-sections (contours), as illustrated in Figure 5-7 with semi-

major axes increasing in proportion with C. For the special case o = 1.0

the contours are circles with radius é% .

Doy

I

N.\/\ e

( N

Y
///'/ //

> A°(3

Figure 5-7

Envelopes of Contour Lines f = const. in the Ao%, Aah Plane

These results derived for two parameters may be extended to
higher dimensions. In the three-dimensional case the F-contours
are characterized by a pair of parallel planes which intersect the
parameter axes at

L L

C
Al='t—\-1-I’A2=iuz ’A3=iu3 (5‘15)

and are separated by the distance 2c/ \/ulz + uzz + u32.
Time-variation of the u, cause the contour planes to envelop a set
of nested contour surfaces. The descent paths must penetrate these
contour surfaces orthogonally in converging to the center at C = O.
In the four-dimensional case the contour planes become hyperplanes

enveloping a set of 3-dimensional closed hypersurfaces.
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It is interesting to consider the possibility of uncontrolled,
large excursion of the descent paths in the directions left open
between parallel contour planes or hyperplanes. The simultaneous
adjustment of more than two or three parameters at a time can become
quite problematic, as indicated by some of the parameter tracking
records, and more research is needed to establish sufficient assurance
of convergence.

The above results explaining the character of the criterion func-
tion raise some questions as to the nature of the parameter adjustment
paths and make it mandatory to examine the behavior of the time-varying
gradient vector. These questions will be considered in the following

section.

The Nature of the Gradient in Continuous Model Matching

The gradient vector in the iterative adjustment process is de-
fined by

o/

A ® DT F )
35, 3%, " ady |

n

== 5y _ 1 2F
VF(Q)':Laal)

where n refers to the number of adjustable parameters. An analogous

definition is not possible for the continuous method since the parameters

are varying and the partial derivatives are not defined. The partisl
derivatives generated by the computer in terms of the variables vy are,
at best, approximete gradient components if the parameter adjustment
is a slow process. In order to circumvent this difficulty and gain
some insight into the nature of the gradient, it is possible to compute
the partial derivatives uy (influence coefficients) by opening the ad-
Justment loops, thus keeping the parameters constant.

The previous section showed that for the criterion f = % ez, the

contours for f = const. are pairs of straight lines. The gradient

vector always intersects the contour f = const. at right angles, and

the rotation of the contour surface results in a time variation of
both the direction and magnitude of the gradient vector.

Let the criterion function be f = % ez. Then, the orientation of
the gradient in a two-parameter space defined by o, and @, is given by

i J
of/oa, eu u,
- J_ . J - —dJ
Mg = af/aozi - eu - (5.16)
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Consider now a specific case. Let the system be defined by Equation (2.17)
with a and Q, being held fixed, and assume a sinusoidal excitation
signal

x(t) = D sin ot .

The influence coefficients u., and uh are obtained as solution of the

3

sensitivity equations

u3+alu3+azu3=x

(5.17)
uh +al uh +a2ul‘. =X
and consequently they may be written as
w, =B sin (ot +¢§@)
L
(5.18)
u, =B wcos (at +¢/)

3
where B/D is the amplitude ratio obtained from solution of the second
order systems of Equation (5.18) and ¢ is the resulting phase shift.

Hence uh 1

tauO:mg: — = Ttan(wt+¢) (5.19)
where © is the orientation angle of the gradient vector relative to
the o.-axis. © thus becomes a periodic function of time. For the

3
care ® = 1.0 Equation (5.19) yields

0 =t + %ikn (5.20)

The gradient vector oscillates both in direction and magnitude, as
indicated graphically in Figure 5-8. This result agrees with the
previous findings, discussed in Section 5.2, regarding rotation of
the contour lines. Note that the parameters a3 and o) are being held
fixed at the point where {/F is evaluated.

Experimental verification of these results was obtained by using
the computer to plot the loci of the open loop gradient in the a3-ah
plane with a sinusoidal input. Figure 5-9 shows these loci at various
trial points. The parameters al and az were set at their correct
values, i.e., they were equal, respectively, to the system parameters

al and 8‘2'
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A
T - 0(3
Figure 5-8
Time Varvineg Gradient in ¢_, ¢, Plane

b
)

As expected, the a3, o, loci of the time-variant gradient vector
o f Sf
b

for every period of the sinusoidal excitation signal. The loci pass

] are nearly circular, describing two full rotations

through the trial point during every full rotation. At these instances
the gradient has the magnitude zero. For random excitation of the model
matching system the loci have irregular shape with varying time-intervals
per full rotation, i.e., between passages through the trial point. The
implications of this result are significant. It can be observed that
the gradient sweeps an angular domain of 180 degrees in the aa, Q, plane
and that only the mean orientation of the gradient vector points in the

desired direction. In other words, the criterion function forms the

time-varying surface discussed in the previous %fction. This suggests

o f
,3<xi
size the preferred mean gradient orientation. Figure 5-10 is a sketch

low-pass filtering of the gradient components

in order to empha-

of different open-loop gradient loci obtained with and without low pass
filtering.
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gradient locus

before trial before filtering
filtering point
gradient 4;{—“’
orientations -
after filtering \\
/ after
’ oy filtering
/
’
/
'4
Rd
d
0/
correct
parameter values
0(3
Open-loop Oradient ILoect in 33, e Plane hefore
and =fter Filtering of Output Signals
Figure 5-10

The time-variation of the gradient leads to an interesting ob-
servation regarding the speed of convergence for a model matching
problem with many parameters. The probability of the gradient being
oriented within the desired angular range is less than 1 inasmuch as
the vector points in other directions part of the time. If, for
example, the vector points in the desired direction only 50% of the
time in a two-parameter adjustment problem, this probability is re-
duced further in a three-parameter problem, and still further in a
four-parameter problem, since the desired direction encompasses less
and less of the total spatial angle over which the gradient vector
can sweep. As a result, the settling time increases at least in pro-
portion with the number of parameters to be adjusted simultaneously.
On theoretical grounds the time would tend to increase with powers
of 2" where n is the number of parameters, considering the geometry

of angular sectors in a hyper-space.

The Adjustment Path in Parameter Space

The time-variation of the gradient vector examined above sug-
gests that when the loop is closed to allow continuous parameter

adjustment, the rate of adjustment will also be time-varying. The
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continuous adjustment method is based on the steepest-descent principle
expressed by

= -KG (p) = K VE(p) (5.21)

L3 B

where G (5) is a vector approximately equal to the gradient of f and
p is the parameter vector. The degree of approximation inherent in
Equation (5.21) improves as the rate of adjustment decreases. There-
fore, at points where VE£(p) = O, the rate of adjustment é will also
be zero. The édjustment path resulting from a sinusoidal input is shown
in Figure 5-11 for several values of adjustment gain K.

The nature of the envelope curves discussed in Section 5.2 above
is inferred by reference to Figure 5-12 which shows the adjustment paths
from different initial conditions. The envelope curves were shown pre-
viously in Figure 5-7 to be ellipses. Consequently, the gradient descent
paths are seen to approximate the radii of ellipses when the rate of

descent has decreased sufficiently. The adjusiment paihs for random
excitation for seversl velues of adjustment gain is illustrated in
Figure 5-13.

An important result of this analysis is the confirmation of the
original conjecture that for sufficiently low adjustment rates a gra-
dient descent path is being followed. Serious questions regarding the
nature of the gradient approximation used only arise at instances of
meximum adjustment rate. Although the descent path is confined within
the closed contours of the envelope surface if the rate of adjustment
is sufficiently slow, it can be seen in Figures 5-11 end 5-12 that for
large values of adjustment gain K a path may develop which at a subse-
quent time increment leads ia a direction nearly parallel to the genera-
tor lines of the instantaneous cylindrical contour surface so that large
and uncontrolled excursions from the desired end point may occur. This
can be expected if the excitation frequency w, for sinusoidal excita-
tion or the bandwidth of excitation frequencies in random excitation
is too small in comparison with K. Additional study of the desired
relationship between K and bandwidth of the excitation signal will be

necessary.
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Effect of the Choice of Adjustment Gain K

The role of the gain factor K in the parameter adjustment process
and the question of whether equal or unequal values of K should be se-
lected in the different adjustment loops is of major interest from a
standpoint of optimizing the overall performance of multi-parameter
adjustment. The following discussion is concerned with those character-
istics of the descent path which depend on the choice of K and on the
scale of presentation in the parameter space.

Steepest descent requires that the adjustment path always be tan-
gential to the local gradient vector‘f7f. The components do& and do

J .
of a path element ds in the 2-dimensional case must therefore be chosen
in the same ratio as the gradient components %}g- and :?az , thus re-

quiring equal gain factors K in both dimensions. If the gain factors
Ki and KJ are chosen unequal a path other than steepest descent will
result. Different paths obtainable by different ratios Ki H Kj will
all converge to the desired end point, but from different directions.
These paths are illustrated in Figure 5-1k.

Using the concept of effective closed f-contours established in
Section 5.2, one finds that for circular contours the steepest descent
paths are radial, whereas for elliptic contours the steepest descent
paths are curved, tending on approach to the minimum to become tangen-
tial to the larger of the two major axes (see Figure 5-15).

It is noted that a choice of unequal scale factors for the coordi-
nate axes in the parameter space does not alter the character of the
descent paths, but only has the apparent effect of changing orthogonality
of contour crossings. This effect is illustrated in the lower half of
Figure 5-15.

The question arises here what normalized scaling must be used for
the various ai in a plot of the descent path in order to show orthog-
onality with respect to the f-contours if all adjustment gains are equal.
To resolve this question it will be necessary to consider the implications
of parameter adjustment in accordance with

. of
ai = -Ka—&: (5,22)
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Figure S5-1b4
Dependence of Descent Path on Choice of Ki’ K 3
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Only the numerical value of each parameter ai, regardless of physical

significance, physical dimension, or computer scaling, is controlled
of

da, -’
The parameters implemented on the computer may be considered as nofi-

by the adjustment loop on the basis of the numerical value of

dimensional quentities (potentiometer setting times associated amplifier
input gain). The gradient components also are non-dimensional; conse-
gquently all adjustment gains K must have the dimension sec'l to assure
dimensional agreement on both sides of the adjustment equation (5.22).
Different physical dimensions of the various system parsmeters can thus
be ignored from the standpoint of parameter adjustment. For a rigorous
treatment of parameters and their physical dimensions it is appropriate
to express each (physical) coefficient o, as the product of a pure num-
ber &k and a dimensional factor of unit magnitude 'gk’

o =3 L, (5.23)

The normalized plotting scale of the parameter ai as programmed on

the computer is in the same non-dimensional units as those of aj. This
procedure has been followed in this study, the parameter plots being
consistently labeled in non-dimensional units. However, different axis

scales were adopted for convenience in some of the plots shown.

Cross=-coupling or Interaction Among Parameters

Interaction effects can be observed during simultaneous adjustment
of several parameters in many of the figures shown in Appendix A. This
section anelyzes these effects and the underlying mathematical relation-
ships.

Functional Relation Between Sensitivity Coefficients

Consider the sensitivity equations for u, and uz for invariant

1
@y Oy

Uy o+ U+ QU = -2 (5.24)

Uy + 0y ﬁz +0y U, = -2 (5.25)
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The initial values must satisfy the condition ul(O) = ﬁl(o) = uz(o) = d2(0)= 0.
Time-differentiation of Equation (5.25) yields the approximate relstion

Uy (5.26)

Transient differences between uy and 62 are caused by a non-zero initial

value

32(0) = -z(0)

Note that &l(o) equals zero by definition but &é(o) in general does not
equal zero.

Similarly, the corresponding two sensitivity equations for u3 and Uy,
33 +a 63 + 0, uy = x (5.27)
Hh + oy dh +a, U =X (5.28)
with initial values u3(0) = 63(0) = u,(0) = &h(o) =0
yield the approximate relation
uy Ty (5.29)

which is valid after transient differences between u3 and dh due to
x(0) # O have subsided.

Combination of the sensitivity equations (5.25), (5.28) and the
original model equation

Zohoy 240,z =0y X +Oy X (?'30)
yields the approximate relation
Uy, X = -uy 2 (5.31)

which is applicable after transients due to z(0) and z(0) have
disappeared.

It is important to note that Equations (5.26), (5.29) and (5.31)
imply time-invariant coefficients. If al and a2 are time-variant,
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a time-differentiation of Equation (5.25) would yield

'Gé + oy 32 +a, dz = -2 4&1 62 - dz u, (5.32)
In this case Equation (5.26) implies an approximation other than the
initial condition effect previously noted. For sufficiently small

ad justment rates dl, &2, the approximations (5.26) and (5.29) are use-
ful in providing estimates of the relative magnitudes of the uy terms .
They also permit a very considerable simplification in implementing
the parameter adjustment system on the computer. This computer pro-
gram includes only Equations (5.25) and (5.28) to generate u,, u, and
u3, ), respectively. The approximation has been used successfully

in several phases of the study to save computer channels, as explained
in the Computer Implementation Section. Similar formulations have
been used by Klenk (17) and Adams (2,18) to simplify the computer

program.

5.6.2 Precision of Parameter Matching

As will be noted in the discussion of the computer results, dif-
ferent parameters of the system are matched with different degrees of
precision. The relative megnitude of the sensitivities ug helps to
explain this fact. Equation(5.5) shows that the instantaneous model
matching error constitutes a weighted average of the individual adjust-

ment errors[kai where u, are the weighting factors. Clearly those

i
adjustment errors which have dominant weighting factors will be adjusted
with the greatest precision. Since u3 dominates in many of the cases
3 ad justment is generally quite high.

is dominated by the other sensitivities and hence «

examined, the precision of the o
By contrast, u, o
is poorly defined. These results are also borne out by Figures 6-1 to 6-3
of Section 6.

An investigation of the underlying mathematical relations will
clarify the picture. The following discussion applies rigorously only
to the linear time-invariant case, but serves to explain basic trends

in the time-variant and nonlinear cases as well.
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It is first observed that the random excitation signal x(t) in-
cludes frequencies up to 5 rad/sec due to human tracking behavior.
Therefore x has higher amplitudes in the upper frequency band than x,
and causes ug to domin%te u), (see Equations (5.27), (5.28), (5.29)).
Similarly,since z and z follow x and i, respectively, it is expected
that Uy will dominate Uoy depending on the filtering characteristics
of the model equation (5.30). Typical values of transfer function
gain for the time-invariant system over the range of input frequencies

are

Z
I'_X'—I = 0-15 X 0025

where X and Z are Laplace transforms of x, z. An estimate of us, and

U, magnitudes can be obtained on the basis of Equation (5.31), viz.,

] - [+
Uh X

Therefore, the sensitivity term ), dominates u, at least by a ratio of

2
3:1., This result is confirmed by many of the time histories ob-
tained (see Appendix A). TFor the conditions under which the model

matching system was operated it may be seen that u. dominates uy, which

3
in turn dominates Ug. Also, uy dominates Uy hence the poor definition
of az and the generally good definition of Oy observed in many of the
computer runs. The relatively larger values of u3 also tend to make
the a3 adjustment loop the most critical in terms of stability,.
5.6.3 Analysis of Cross-coupling Effects
Considering the steepest descent equation
. Of
a; = K —5-51 = -Keu i=1,2, 3, L (5.33)

it can be seen that the adjustment rate is proportional to the

model matching error e and the sensitivity u The error term e

i.
may again be expanded, in first order approximation, in terms of

individual parameter errorsZ&cH] viz.,

e ';’ulAal + oeen + ub,Aah (5.34)
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where higher order effects, noise, and uncertainty in the structure
of the mathematical model are omitted. This equation implies e = O
when all parameters ai have been adjusted to the desired values a,,
such thatléiai = 0. (This restriction will be removed later.) Com-
bining Equations (5.33) and (5.34) one obtains

L
& T Ku ) ay o, 1=1,2 3,k (5.35)
j=1

Hence each parameter adjustment rate &i is sensitive, to a varying
degree, to all of the instantaneous parameter adjustment errorsliaj.
This sensitivity is expressed by the (approximate) symmetrical square
matrix (S) with time-varying elements

Sij = ui u, (5'36)

such that
a = -K (8) &x (5.35a)

where é is the rate of change of the parameter vector a. K may be
a scalar if the same adjustment gain is used for all parameters;
otherwise it becomes a constant matrix.

If the adjustment of each parameter were independent of all the
other parameter-offsets, (S) would be a diagonal matrix. Actually,
the various parameter-offsets interact dynamically, the off-diagonal
elements of the matrix being the cross-coupling coefficients. Under
random excitation x(t) the cross-coupling terms mey have small average
values, provided the u, and uJ terms are statistically independent.
The diagonal terms uiz are non-negative and their average values tend
to be larger than those of the cross-coupling terms.

It was previously noted that the sensitivity terms u, and u,

dominate uy and Uy, respectively. This is explained by tie factjthat
uy and u3 are obtained as solutions of sensitivity equations in which
the time-derivatives z and x rather than z and x are the forcing functions
of Equations (5.24),(5.26), Considering the frequency content of the ex-
citation signal x and the dependent variable z it follows that x and z

have larger maximum excursions than x and z, respectively.
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These facts explain the prevalence of cross-coupling effects be-
tween errors in the a, and a3 adjustments which were observed in
Figures A-10and A-15. In Figure A-10, the variation in e vwhich
was introduced by a sinusoidal perturbation of the corresponding system
parameter 8y also caused sinusoidal variations in a3. This effect in
turn caused secondary cross-coupling in al.

Cross-coupling effects are also noticed when all but one model
parameter are initially set at their correct values. During the adjust-
ment of the initially incorrect parameter some transients will occur in
the remaining parameters ai as a result of cross-coupling, according to
Equation (5.35) because the sensitivities ug corresponding to these
parameters are non-zero.

Equation (5.3&) in the above analysis is based on the assumption
that residual modeling errors due to model structure uncertainty, ran-
dom noise, etc, can be ignored. However, in the presence of residual

error this eguation must be augmented by forcing terms proportional

res

& = -K(8) Ao -Ke, n (5.37)

Actually, since the u;, u depend to some degree on all ak settings,

J

the eguations (5.39), (5.%7) are not strictly linear.

In summary, the following properties of the adjustment process are

derived from this mathematical formulation:

1) Cross=-coupling effects are introduced by the off-diagonal
terms u, uj. The magnitude of mean values as well as in-
stantaneous excursiogs of ug m‘j relative to those of the
diagonal elements uy indicate the extent of cross-coupling
in the adjustment process.

2) In the case of random excitation signals x(t) with zero mean
the influence coefficients u, are also random with zero mean

i

but uy and uj may be correlated so as to form a non-zero mean

product. In the case where one influence coefficient is the

derivative of another, e.g. u, = 62, u, = dh in linear in-

3

variant systems the mean product tends to be zero,.
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3) The instantaneous products may be large even for zero mean,
4 adjust-
ment. This is possible particularly with low frequency of

and integration may yield large disturbances in o

excitation which allows the products u, u to maintain posi-

J

tive or negative values for extended periods of time.

5.7 Analysis of Model Matching Using a Sinusoidal Excitation Signal

5.7.1 Indeterminacy of Model Parameters

The use of a purely sinusoidal excitation signal x(t) in some
portion of the analytical and experimental studies helped to clarify
fundamental properties of the parameter adjustment process. However,
from a practical standpoint such an excitation signal is unsuitable
since, in general, it does not yield unique parameter values if more
than two parameters are being adjusted simultaneously. This fact has
been observed experimentally during the computer study and can be
easily explained.

Let the system be described again by
y+a’ly+a‘2y=a3x+ahx (5'38)

and the model by

Z +0, Z +0Q, 7

1 > a3x+ahx (5.39)

This case permits exact model matching if all ai =a. The question
considered here is concerned with the uniqueness of this solution for
the 's. If individual parameter errors A&ai are assumed to exist
such that

a, =0, +AJ,
i al Al

then for uniqueness of parameter definition an exact model match
€ =2 «y =0 must imply zero values of all Axai and vice versa,

In order to examine the behavior of the Aa's Equation (5.38)is
subtracted from (5.39) yielding

(7 - %) + (a7 - oqz) + (ayy - apz) = Loy x Lo x (5.40)
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For the case of ideal model matching, z-y = 0, this equation reduces to
Aoy y +Aa, ¥ -Aa3 p'4 -Aah x =0 (5.41)

This linear algebraic equation is satisfied by

Aal =Aoz2 =Aoz3 =Aa, =0

which is the correct solution to the problem, regardless of the nature
of the excitation x(t). Clearly, if the excitation is a random signal
or a composite of sinusoids no other solution is possible, hence the

correct solution is unique. For the pure sinusoidal case
x(t) = A sin wt
which yields a steady state output

y(t) = B sin (at + )

P [T . - R O U X SR, 3 i
The equation (5.41) is equivalent Lo Lwo eguations derived by senarating

since and cosine terms:

B w cospAa, + B sindda, - Awda, =0

B wsingda - BcosfAa, + Aby =0

In addition to the solutionllcxi = 0 there exist infinitely meany other
solutions making the parameter values indeterminate. By assuming fixed
non-zero values for two of the parameters the two remaining parameters
are uniquely determined. This result agrees with observations during
parasmeter adjustments performed on the computer: The indeterminacy of
two of the parameters appeared as drift or by settling on incorrect
terminal values (see Figure A-4).

In the more realistic case of matching an unknown system the two
equations corresponding to (5.38) and (5.39) do not have exactly the
same form, hence residual terms will appear in Equation (5.40) and
(5.41) even for a very close agreement of the output variables of y
and z. Therefore the condition of optimum match becomes an inhomo-

geneous algebraic equation in YA equivalent to (5.41) having unique

i
solutions for Aa]. for random or random-appearing excitation signals.,
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Model Matching With Low Frequency Input

It is interesting to consider the special condition of very low
frequency input signals where the human operator can follow the dis-
played excursions with negligible phase shift. A reasonable approxi-

mation of human response is given by

z T kx (5.43)

where k is the low-frequency gain (assumed constant under the given
conditions ). This yields the derivatives

2 ¥k x

. . (5.44)

z Tkx
Substitution of these terms into Equation (5.39) results in

. aq . ),
z+(al-—k—)z+(oz2-k )2=0 (5.)4-5)

For arbitrary input signals no direct conclusion can be drawn from

this statement. However, if the input is a sinusoid of low frequency,
the output will be proportional. But for sinusoidal signals z it can
be concluded that the coefficient of z must vanish, and the coefficient

of z equals w? where w is the excitation frequency. Therefore,

a3 = kai

2 o |
ah kaz + ko = ka2 (5.’4-6)
It is again seen that two parameters in the set of four are inde-
terminate, i.e. only the combinations (a3 - kal) and (ah - kaz)
are determined in this case.

The coupling effects present in a, and in 0oy o), can also

3
be obtained by consideration of the sensitivity matrix [Sij] previously

introduced in this section. Since all sensitivities u, are sinusoids

and are in phase with either x or X one obtains .
u, = kl %
u, = kz X
ugy = k3 x



where the k's are constants.

has the form

khk X X

. .2
k k2 x x k. k3 (x)
2 2 ‘
k2 X k2k3 X X
. 2 ,..2
k2k3 X X k3 (x)
Kk, X2 Kk, XX
L2 43
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Consequently, the sensitivity matrix

klkh X X

2
kzkh b4

It can be noted that only three types of terms appear in this matrix:

namely, xz, iz and x
is clearly positive,
However, the average
the x x terms do not

the equation for dl

value of x x is zero.

has strong coupling from A ¢

The average or expected value of x2 and iz

contribute to their respective

3"
strong coupling from 45a1. A similar effect exists

since they each represented squared sinusoids.

Therefore, on the average,

equations. Hence
Likewise, ¢_ has

3

for o, and ah'

2
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EXPERIMENTAL RESULTS

The experimental work has been divided into two portions, as
follows:
a) Computer experiments designed to explore and improve model
matching techniques and to determine their limitations. These
tests were performed by matching the output of a known system
(a linear or nonlinesr second-order differential equation) with
that of a mathematical model of the same form, whose parsmeters
wvere to be adjusted.
b) Application of the model matching techniques to actual human
pilot tracking data, recorded on magnetic tape. The form of mathe-
matical model used here was similar to that examined during develop-
ment of the techniques.,
The results will be presented in two major portions in accordance with

classifications (a) and (b).

Experiments with Model Matching Techniques

In order to optimize the convergence time in the case where the
system to be identified has fixed parameters, the behavior of the contin-
uous model matching technique was examined for both sinusoidal and random
inputs. In both cases the effect of adjustment gain, initial conditions,
and criterion function on the adjustment path was examined. This study
was initiated with sinusoidal inputs to facilitate analysis of the adjust-

ment process.

Effect of Adjustment Gain

Consider first the effect of the adjustment gain on the time history
of the parameters. The theoretical aspects of this problem were discussed
in Section 5, and descent trajectories in the a3-ah plane are shown in
Figure 5-11 (for sinusoidal inputs) and Figure 5-13 (for random inputs).

Corresponding time traces of the parameters ¢, and ah are shown in Appen=

dix A in Figures A-2 and A-3. The behavior 03 the parameter traces in
these figures is due to the nature of the gradient and the characteristics
of the forcing function. The local variations of the parameters notice-
able in Figures A-2 and A-3 therefore are characteristic of the process.

Where they occur in subsequent examples they should be viewed with caution
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since they do not necessarily indicate local time variations in the

parameters being metched.

Referring again to the adjustment trajectories displayed in Fig-
ures 5-11 and 5-13 the effect of increased gain (K) is strongly noticed
by comparison to low-gain trajectories. For K = 0.008 and 0.0k the
adjustment rate is extremely smallvand the almost monotonic trajectories
approximate a nearly ideal descent path. This behavior clearly shows
the validity as well as the limitation of the basic éssumption inherent
in this approach to model matching, regarding the nature of gradient
descent paths. A direct observation of units of time along the trajec-
tory, and hence of the descent rate, is possible by counting the suc-
cessive scallops formed by the oscillating gradient vector. Each
scallop corresponds to a half-period (3.14 sec) of the sinusoidal ex-
citation signal,

The Effect of Parameter Initial Vaslues

The results obtained from this experiment are given in Figure 5-12

and have been discussed in Section 5.

Effects of Rate Terms in the Criterion Function

Margolis (8 ) has shown that improvement in stability and conver-
gence time of continuous model matching processes is achieved if a term
proportional to the rate of change of the matching error is added to the
criterion function. To study this effect the criterion function

f=4%(e+ qé)2 (6.1)

was adopted with q = const. Different values of q were used in the
study to find optimum conditions.

In order to obtain rapid convergence (which is desirable for the
tracking of time-varying parameters) it is necessary to increase the ad-
Justment loop gain. However, the parameter adjusting loop becomes un-
stable when gain is increased. This effect is illustrated in Appendix A
in Figures A-l and A-7 for q = O, that is, when no rate term is present
in the criterion function. These figures illustrate the behavior of the

four parameters for sinusoidal excitation at a frequency of 1.0 rad/sec.
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The effect of increasing the contribution of the rate term is seen
in Figures A-U, A-5, and A-6 for q equal to zero, 0.5, and 1.0, respec-
tively.* The adjustment gain in each of these three figures is held at
K = 8.0, that is, the value of gain is selected sufficiently high to
cause oscillatory behavior of the parameter adjusting circuits in the
absence of the rate term. As q is increased from zero a dramatic im-
provement in performance is evident., For q = 0.5, most of the oscilla-
tion in a3 and ), disappears and the criterion function is essentially
zero throughout the duration of the run. As q is increased to 1.0 the
oscillation in parameter au disappears entirely while that in a3 is re-
duced to less than 5 percent of its maximum value. Convergence of the
parameters to within 5 percent of the desired values occurs in approxi-
mately 3 seconds. These results show that high gain values yielding
rapid convergence can be tolerated by the parameter adjustment circuits
without instability only when the criterion function is augmented by a
sufficiently large error rate term. It is interesting to note that in
Figures A-b4 and A-5 the oscillatory behavior of the parameters is not

revealed by a mismatch of model output and system ocutput.

The effect of the rate term q on parameter adjustment in the case
of random excitation is illustrated in Figures A-T and A-8, These re-
sults were obtained under the following conditions: The random input
signal obtained from a (Gaussian noise generator was filtered by a third
order lag circuit with a break frequency of 1.0 rad/sec, Parameters al
and a, were held constant in order to minimize the interaction between

parameters., The adjustment loop gain for parameters o. and au was set

3
at K = 16, This gain value resulted in instability for a sinusoidal
input. The values of q used in Figures A-T7 and A-8 were O and 0.5

respectively.

Figure A-T shows instability of the parameter adjusting circuits
in the absence of the rate term. It is interesting to note that due to
the nature of the excitation signal there are portions of the tracking
run when the parameters remain approximately constant and the matching
error approaches zero. However;, at times when the excitation makes large
excursions the equilibrium is disturbed and the parameters begin to

oscillate,

*Attempts at adjustment of four parameters under sinusoidal system excitation
normally lead +to indeterminacy of two of the parameters if q = 0. It was
observed here that a sufficiently large rate term (q = 1.0) eliminates this
condition, but an analytical explanation has not been found.
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Figure A-8 shows the behavior of the system with q = 0.5. Parameters

., and au converge to within approximately 5 percent of their correct val-

uzs within one second but continue to exhibit small random oscillations

(i 5 percent from the correct value) during the entire run. The improved
convergence time, as compared to the 3 second adjustment with the sinusoidal
input, is probably due to the presence of higher frequencies within the
excitation signal. It can alsoc be noted that the system output and the
model output are essentially equal, i.e., the matching error is nearly zero.
Increasing the rate term to q = 1,0 does not result in further improvement

of the parameter adjustment process.

Sinusoidal Variation of Parameter o

Results obtained when attempting to track a sinusoidal variation of

parameter a., are shown in Figures A-9 .and A-10. The experimental condi=-

1
tions imposed in each case were as follows:

Figure A-9: The system parameter 8y

was perturbed sinusoidally at a
frequency of .l radians per second. Model paramet

ers o, _. @¢_. and ah
were held constant.

Figure A-10: Same perturbation of system parameter a. as in Figure A-Q

1
but 2ll four model parameters allowed to adjust.

The criterion function did not include a rate term in this instance. The

results obtained are summarized as follows:

1) When only the model parameter is allowed to adjust which corresponds

to the perturbed system parameter (in this case a,), an acceptable param-

a
1
eter tracking performance is observed. Superimposed on the sinuscidal
parameter variation of al are random components which are introduced by
the random excitation signal. Disturbances in the time history of param-

eter o, correspond to large excursions in the system and model output

1
quantities.

2) When all four circuits are activated some undesirable side effects
are observed (see Figure A-10): The sinusoidal perturbation of system

parameter 8, reflects not only in the model parameter al but also in

parameter O Secondary cross=-coupling effects are caused in turn by

3‘

a3 variation and tend to reduce the amplitude of oscillation in param-

eter al to a new and incorrect value. Parameters az and au exhibit some
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drift from their correct values, but their effect upon the criterion
function is negligible. These phenomena have been adequately explained
in Section 5. 6 by the analysis of cross-coupling and relative accuracy

of parameter determination.

Sinusoidal Variation of Parameter a3

Attempts to track a sinusoidal variation of parameter a., are illus-

3
trated in Figures A-l1l, A-12, and A-13. During this experiment only model
parameters a3 and ah were allowed to vary, while parameters al and a2 were

held fixed. The results are summarized as follows:

1) Attempting to track parameter a. with a low value of gain (K = 2.0)

3
and 9@ = O results in the curves of Figure A-11l. It is apparent that

. Further-
3 3

more, parameter ah drifts from its correct value to a new incorrect equilib-

parameter ¢, does not follow the sinusoidal perturbation of a
rium position. The matching error, which is given in trace 8 of Figure A-11

is quite small when the corresponding scale is taken into account.

”

2) Increasing the gain to K = 16 with q = O results in the curves shown

in Figure A-12., Evidently both parasmeters «. and au become unstable and

3
the match between system and model becomes considerably worse. As observed
in previous results, there are periods of time during which the match is
rather good, followed by periods of time when the random excitation signal

causes uncontrolled parameter oscillations.

3) Figure A-13 shows the improvement obtained by adding a rate term
(q = 0.5) to the criterion function while all other experimental conditions
remain the same as in Figure A-12., The match between system and model out=

puts is excellent, and Q. approximately tracks the sinusoidal oscillation

3

in a3. However, the effect of random excitation peaks is reflected again
in random disturbances superimposed on the oscillation of parsmeter a3e
Step Variations in Parameter a

3
Figures A-1ll and A-l15 show the behavior of the parameter tracking

system when parameter a3 is perturbed by step changes at a low and high
frequency, respectively. The adjustment gain is K = 16, and q = 1.0.

All four parameters are allowed to track. Consider first Figure A-1h4
which in effect corresponds to the behavior of the model matching technique
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for fixed parameters since adequate time for parameter adjustment elapses
before the values are changed. The match between system output and model
output is excellent but a switching transient is observed in the matching
error. Trace 8 which includes the effect of error rate exhibits this ef-
fect clearly.

In Figure A-15 parameter a3 is perturbed by a square wave signal.
It can be seen that the system and model outputs contain significant energy
at frequencies approximately equal to the fundamental frequency of the
square wave. Consequently, the behavior of parameter a3 in the model varies
from cycle to cycle, dependong on the corresponding initial conditions
present in the random excitation signal. Cross-coupling of parameters is

again evident, both in e and in Q), .

Ad justment of Parameters in Nonlinear Models

The nonlinear system described was simulated on the analog computer.
The adjustable model was identical in form to this system, and had seven
adjustable parameters o&, Ay, ...a7. Of particular interest in this por-

tion of the study are the parameters characterizing the nonlinear terms

of the model equation:

a5 : coefficlent of the cubic term x3
Qg ¢ coefficient representing dead space
a7 : coefficient representing saturation level.

The criterion function included the rate term qé,where q = 0.5. The

adjustment process of each parameter o, a6,and a. was first studied

p T

separately.

1) The results of adjusting parameter ¢ are shown in Figure A-16.

The presence of the cubic term in the syszem cannot become noticeable
until the output variable y becomes large. Consequently, a5 does not
deviate substentially from its initial value until the random excitation
causes large excursions in the system and model outputs. Total adjust-
ment time is of the order of 5 seconds.

2) Adjustment of the deadzone parameter (a6) is shown in Figure A-17.
When the model deadzone is set to an initial value of zero, the initial
excursions in the model output z are clearly too large. The adjustment
process requires approximately three seconds to increase a6 to its cor-

rect value.
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3) The saturation level a7 was adjusted manually due to a lack of
computing channels required to perform automatic adjustment. The re-

sults of this manual adjustment process are shown in Figure A-18,

4) Figure A-19 shows the effect of simultaneous adjustment of the
deadzone and the cubic term. The behavior exhibited here is typical
of a number of runs performed. A relatively rapid initial adjustment
of the deadzone is followed by a gradual adjustment of the cubic term.
This effect can be expected: after adjustment of the deadzone the
matching error becomes extremely small and relatively large excursions
of the model output are required to further actuate the adjustment
circuitry. The final adjustment of parameter a5 to its correct value
occurs at the point indicated by an arrow in Figure A-19, approximately
37 seconds after the beginning of the run, at a time when the matching
error becomes sufficiently large to cause parameter adjustment. A
slight cross-coupling between the parameters is also evident at this
time. Since at this point the model output is too large this error
can be corrected either by a decrease in the cubic term or by an in-
crease in the deadzone width. Both effects are noticeable. Such
interactions are typical under conditions where different parameters

have a comparable effect on the output signal.

6.1.8 Effect of Additive Noise on the Parameter Adjustment Process

Random noise perturbations were added to the output of the system
equation to simulate unmatched random fluctuations of the human opera-
tor's output in order to observe the effect of this disturbance on the
model adjustment process. The additive noise can also be interpreted
as measurement error occurring in the process of data handling, e.g.,
signal transmission, recording and playback of pilot output data;

The effect of the noise on the adjustment of one linear and one
nonlinear parameter is illustrated in Figures A-20, A-21, and A-22,

The parameters being adjusted are the coefficient a. of the input rate

term, and the deadzone a6, Figure A-20 shows the agjustment process with
no additive noise. It can be seen that the rate term adjusts rapidly
with the occurrence of peaks in the system output and that the adjust-
ment is essentially complete for both parameters in spproximately

10 seconds. The matching error is essentially zero after this time,



6.2

6.2.1

8426-6006-RU-000
Page 86

The effect of low frequency additive noise is illustrated in Fig-
ure A-21l. It can be seen that both parameters deviate substantially
from their correct values, due to the low disturbance frequencies
(the noise signal input gain used here is c = 8),

A vastly different result obtained with wideband noise input hav-
ing a bandwidth of 30 cps and an input gain ¢ = 1 is shown in Figure A-22,
The disturbances at high frequency observed in the system output and the
error signal are very large but are filtered effectively by the parameter
adjustment circuits., The two parameters a3 and Q¢ converge as rapidly
as in the undisturbed case (Figure A-20) and reach their correct values.
It must be noted that the gain of the noise disturbance is much lower
than in the case shown for low frequency noise (Figure A-21). Noise
signals with the same zero frequency spectral density were used in both

cases.

Matching of Human Tracking Data

Model matching techniques were applied to human tracking data in
each of the four main parts of the study and the results will be pre-

sented separately for each part.

Linear Invariant Models of Human Operators

The three methods (continuous, iterative, and relaxation) discussed
in Section 4 were employed to determine the coefficients Ay s Oy a3, and
), by matching the solution of the linear equation (2.17) to human track-
ing data.

All three of the techniques employed can be considered successful
in the sense that all converge to steady-state values of the four param-
eters in the model. The values of the parameters Qy, Qg a3, Q, 5 obtained
are presented in graphical form in Figures 6-1, 6-2, and 6-3. These
figures correspond to three different controlled element dynamics as in-

dicated in the legend. The following observations are made:

1) The mean values of parameters obtained by the three adjustment
strategies are not equal but the scattered data usually overlap. For
parameter al the continuous method yields smaller values than the other

two. For parameter ¢, the iterative method yields the smallest value

2
of the parameter. Parameter o, yields approximately equal values with

3
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all three methods. A slightly higher value for parameter o is obtained
by the relaxation method. These differences have been partly explained
in Section 5 in terms of the sensitivity of the error criterion to in-
dividual parameter deviations. It should be recalled here that the sensi-
tivity u3 exceeds all other sensitivities and Uy is the smallest sensi-
tivity, in terms of mean absolute values. The variances in a3 and a,
reflect this property.
2) The values of the parameters obtained with any one adjustment strategy
vary from run to run and between operators. This variation is of the same
order of magnitude as the variation between strategies. However, insuf-
ficient data are available to determine the statistical significance of

the variations.

3) The values of parameters obtained with the two second-order dynamics
(Figures 6-1, 6-2) are approximately equal. There is an apparently sig-
nificant difference between these parameters and those obtained with first
order dynamics (Figure 6-3). Intuitively one would expect that the easier

first order task requires smaller lead compensation values ., on the

3
average. This expectation is clearly confirmed by the data.

L) Parameter values for six typical runs, averaged over the three
methods, have been tabulated and are shown in Table 6-1. Eguivalent val-
ues of gain and time constants in the corresponding transfer function are
also listed. The majority of the data yield complex roots in the denom-
inator of the transfer function. However, at least two of these exhibit
very small imaginary parts. The significance of these complex roots will
be discussed in Subsection 6.2.3. The results from any two runs with the
same dynamics are quite consistent. Greater consistency is found in the
values of gain K obtained from any two runs than in the values of the
time constants.

An interesting general conclusion regarding the sensitivity and
ease of determination of the transfer function characteristics can be
derived from the data obtained in this study. The numerator terms a3,
ah (and hence Kl and Tl) can be determined with high accuracy. They are
also very sensitive to the dynamics of the task, i.e., the human operator
alters his responses readily to adapt his performence to the task. Con-
versely the denominator terms are difficult to determine but they do not
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TABLE 6-1

AVERAGED PARAMETER VALUES OBTAINED FOR THREE
CONTROLLED ELEMENT DYNAMICS

Controlled Coefficients Elements of Transfer Function
Elewment Run a o a K T T T
Dynamics No. al 2 3 4 L L 2 3
12.5 1 6.3 19.0 3.67 5.8 .30 .63 AT+.15] A17-.153
5(5+1) 5 6.8 14.0 L4.15 3.7 .26 1.1 2he 11y L2h-.11j
K 7 8.3 23.0 3.4 2.3 10 1.48 184,13 18-.13
S2 12 9.5 23.0 5.5 1.8 .078 3.0 .21+.03j ,21-,03]
X 15 8.0 13.2 -.73 3.k 26 -.21 .18 42
S+l 17 6.6 12.2  .067 3.0 .25  .022  .27+.0825 .27-.082j
change much as the control task is altered. These conclusions should
have a major influence on the experimental design of future model match-
ing studies.
6.2.2 Comparison with Previously Published Data

A comparison of these results with data published by Adams ( 2)
is indicated in Table 6-2. The results are comparable. The restriction
to real roots in Adams' study is due to the model transfer function for-
mat adopted by him, In comparing the data the following factors must be
noted:
a) The excitation signal breask frequency was 1 rad/sec in both studies.
However, the STL study used a third-order filter while Adams presumably

used a first-order filter.

b) The gain term in the definition of the dynamics cannot be compared

without additional data. The STL gain includes the oscilloscope gain in

volt/cm, thus yielding units of cm'l. In Adams' notation the gain refers

to the controlled element dynamics only thus yielding units of volts_l.
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6.2.3 Occurrence of Complex Roots

Table 6-2 shows the occurrence of complex values of the param-

eters Tz, T, in the human operator transfer function that are derived

3
from the coefficients 0., @,. On the other hand, Adams' results (2)

1’ 72
are obtained from a transfer function model with denominator (1 + Ts)z.
This formulation excludes the possibility of complex roots but postulates
real-valued double roots. The following mathematical aspects are of

interest and must be considered when comparing these data:

1) The complex roots Tz, T., are obtained from the characteristic

3

equation of the human operator model expressed in terms of A, o,

1 2 9
2 )

s +1 =0

Inaccuracy in the determination of a, A, therefore reflects

strongly in the roots T,, T,, particularly if these roots are approxi-
& 2
mately equal.

2) The correspondence of the coefficients s A,

o s3 = 1/T3 of the characteristic equation is shown
in the ,, d, plane (see Figure 6-ha) which delineates regions of real

and the character
of roots s, = 1/T

and complex roots as well as regions of instability. The stable quad-

rant (al>'0, a,>0) is mapped into a plane of real-valued and a plane

2
of complex-valued roots S5, 53, as shown in Figure 6-4b and ¢. Curves

of constant @, and az values are plotted in these graphs; their inter-
o) s3. At the locus of

double roots the Q,, O, curves intersect in cusps, making the location

1
sections show the corresponding values of s

of the roots extremely sensitive to small c¢x-variations.

3) The characteristics of the pilot model and the relative magni-

tudes of parameter influences analyzed in Section 5 explain the limited

accuracy inherent in the determination of al and a2 which was confirmed

experimentally as shown by the scatter plots (Figures 6-1, 6-2, and 6-3),
The combined effect of the above factors explains the apparent

discrepancy in the denominator terms in the STL model and in Adams' model.
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Time Recordings

The asctual performance of each of the three methods can be examined
more directly from the strip chart recordings obtained during typical
runs; see Appendix A, Figures A-23 to A-27. The recordings contain the
time history of the four parameters as well as inputs and outputs of model
and human operator and the criterion function.

The iterative method is illustrated in Figures A-23a, 23b, and 2k,
Figure A-23a shows a computer run performed during one iterative cycle
with all parameters held fixed. The corresponding iterative sequence
is shown on a different time scale in Figure A-23. An essentially mono-
tonic decrease of the criterion function F is exhibited by the envelope
of the sawtocoth curve, trace 5. The total time of convergence in this
example is quite large since cech iterative cycle required approximately
160 seconds, composed of four subcycles resulting in step adjustment of
one parameter at a time, This time sequence is noticeable in Figures 23b
and 24. In practical uses of the method a time compression of at least
50:1 would be possible with high-speed iterative analog computers.

Figure A-24 shows sn iterative run where terminal limit cycle os-
cillations are observable in all parameters, but most notably in a3 and
o), which have the highest adjustment loop gain as previously discussed.
In this case the finite step size Zxai(k) being maintained throughout the
sequence was obviously too lerge. A refined technique would require a
reduction of step size when the occurrence of limit cycles is registered
by the computer. The oscillaticn may also be due in part to the fact
that the gradient was computed using the finite difference approximation

AF F(al,az,.,,aJ+Aaj,an)- F(al,az,..ﬁl,.”an)

AozJ

J = l,z,ooon

rather than the influence coefficient method.

Typical results using the continuous method are shown in Figures A-25
and A-26,

The relexation method was based on finding the minimum of the cri-
terion function (on a digital voltmeter) and manual adjustment of the

parameters. No attempt was made to improve the resolution of the volt-
meter near the minimum, which expleins a somewhat uncertain convergence

to the final parameter values, as shown in Figure A-27.
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Validity of the Results

The results show that all three methods considered yield parameter
values which are approximately equal. However, the final values of the
performance criterion function (in the iterative and relaxation methods )
was seldom smaller then 30% of the values obtained with arbitrary initial
parameter velues. Furthermore, while the model output, after parameter
adjustment, does resemble the human pilot's output, this resemblance is
not sufficiently close to make the criterion function approach zero. The
differences could be due to:

a) Omission of the time-delay (reaction-time) term known to exist in
the human

b) Inadequate complexity of the model

c) Inadequate training and, hence, lack of consistency in tracking

on the part of the operators.

Identification of Time-variant Human Operator Parameters

The continuous model matching technique was used to identify the
parameters of a human operator in a tracking task so constructed that
the operator's behavior became time-varying. The operator is expected
to adjust his response to changes in the dynamics of the controlled ele~
ments. The controlled element gain and "time constants" were varied as
functions of time as outlined in Section 3. The results for two different
operators performing the same time-varying tasks are shown in Figures A-28
and A-29,

Consider Figures A-28a and b. Parameter o does not reveal any
well-defined pattern and can be considered approximately constant for
the five-minute duration of the run. Parameter Ay exhibits what appear
to be significant changes. As the plant gain is increased parameter az
likewise increases while parameter Q) decreases. As the plant is trans-
formed into a double integrator, parameter az further increases while
2 is
in the course of these plant variations.

parameter au further decreases. The trend observed in parameter ¢
essentially reversed in a3
Effects of these changes manifest themselves in the tracking behavior:

The operator's output, the second trace of Figure A-28b, shows that dur-

ing the portions of the run when the loop gain was high the amplitude
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of the operator's corrections was correspondingly lower. This behavior
is to be expected since the same magnitude of correction can be obtained
with a smaller stick displacement when the plant gain increases.

The effect of the observed time variations in parameters o and

, O
ah is most clearly discernible in terms of the gain and lead timz cog-
stant in the operator's mathematical model. It is assumed that at the
end of each phase in the tracking run the model parameters are stationary.
Average values of the parameters al through Q) were read at the times

indicated in Figure A-28b as listed in Table 6-3.

TABLE 6-3
Indicated Model Lead Time
Time Gain Const.
Kl Tn
tl A37 1.5
tz .278 1.9
t .150 2.8
3 5
th A43 1.5

As the difficulty of the task increases, i.e., as the plant gain
increases and the dynamics is changed to a double integration, the
operator's gain decreases and his lead time constant increases. In other
words, the operator increases his effort of input prediction at the ex-
pense of output gain. As the plant is once again adjusted to its orig-
inal condition the model parameters return to approximately their original
values and the matching error again approaches its original value.

A similar pattern of behavior is observable in the records of
Figures A-29a and b, except that the operator performing the task in
this case exhibits a considerably greater variation in response than
the previous one as is indicated by larger excursions in the parameter
values. It is expected that longer training times would have resulted

in smoother performance for both operators.
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The results show the feasibility of using continuous parameter
tracking techniques for the identification of time-varying human pilot
parameters. However, considerable caution must be exercised in inter-
preting the parameter values in a time-varying model since these values
are also influenced by such factors as the excitation signal, transients

caused by particular initial conditions, and parameter interaction,

6.2.5 Matching a Nonlinear Model to Human Pilot Data

The continuous method was used to match the nonlinear model dis-

cussed in Section 3 against human operator tracking data. In order to
minimize cross-coupling effects, only two parameters were adjusted si-
multaneously during one run. Following this parameter adjustment, a

mean value for these parameters was obtained from the traces and used

in following runs. The results of this process are shown in Figures A-30,
A-31 and A-32. The input and output were obtained from approximately

30 seconds of human tracking data recorded on a magnetic tape loop. The

following observations are made:

1) The addition of nonlinear terms ¢_ and a6 to the model reduces

>

the model matching error. Evaluation of the integrated absolute error,

t,+T

1
Fl = h//f |e + qe |dt

Y

over the last 30 seconds of each of the three runs yields

2.2 cm2 from Figure A-30

A
F 2
Fl 2 1.9 cmz from Figure A-31
Fy 4 1.5 cn® from Figure A-32

During the run shown in Figure A-32 the four linear parameters were
held fixed at the mean values determined from the runs of Figures A-30
and A-31. The reduction in the error measure is taken as an indication
that nonlinear effects in the pilot's response are at least partially

taken into account by the nonlinear terms added to the model.,
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2) The role of the parameter associated with the cubic term ¢
in the model output is not sufficiently clear. 1In Figure A-32 ¢

5
p

is a small negative value for a portion of the run, then zero, and
then & small positive value. Whether or not this variation represents
in fact a change in human pilot characteristics cannot be determined
without additional supporting data.

3) The deadzone term g also varies both positively and negatively.

A "negative deadzone" corresponds to a nonlinear characteristic known

as "negative deficiency" (Figure 6-5). The adjustment of ¢ has the
following effect: When the model output is too small, Qg tends to be-
come negative, thus causing in effect an amplification of the model

T When the model
output is too large a6 becomes positive thus causing a decrease in the

output by increasing the magnitude of the input term x

magnitude of the input term and a corresponding attenuation of the
output.

The results shown in these three figures indicate that continucus
model-matching techniques can be used for the determination of param-
eters in nonlinear models of human pilots. The tracking records used
in this portion of the study vere obtained during an earlier phase of
the program, where no attempt was made to induce or accentuate nonlinear
behavior. The human operators would probably show clearer evidence of

nonlinear behavior if the task had included nonlinear dynamics.
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Block Diagram of Continuous Computation Scheme

-r

Abd

Dead Zone, a6> 0

./
/

X

Negative Deficiency a6< 0

Figure 6-5
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6.2.6 Two-Axis Model Matching Results

As outlined in Section 3, the computer simultaneously adjusts the
four parameters of a single-channel linear model which represents the
input-output characteristics of the human operator in each axis of the
two-axis task in the absence of cross-coupling. Figure A-33 shows the
parameter values obtained when this model is matched to the horizontal
tracking response. The parameters obtained from matching vertical axis
tracking responsesare shown in Figure A-3hk. The displayed error appears
on channel 1, the pilot's output on channel 3 of these figures. The two
traces exhibit a highly consistent tracking behavior, with the frequency
and amplitudes of the operator's output not varying significantly during
the run. Consequently, it is expected to find that the model parameters
maintain approximately constant values. This result can indeed be ob-
served in both figures on channels 4 through 8.

The validity of the model matching results presented in this section
will be evaluated by examining the mean squared residual matching error
defined by

where ey is the error obtained by subtracting the model output for the

horizontal axis from the pilot's horizontal axis output and T is the

run length. Similarly, ev represents the mean squared residual matching

error in the vertical axis. The values of ev2 abd eh2 obtained for the

runs of Figures A-33 and A-34k are given in Table 6-4.

TABLE 6-4

Values of Mean Squared Matching Accuracy
in Horizontal ¢ Vertical Axes

4 of Human Power Output

Matching Accuracy Accounted for by Model

2 2
eh €v Horizontal Vertical
Variable 0.0115| 0.0167 - -
Parameter$
Fixed 0.0122( 0.0180 63.0 82.7
Parameters
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The resulting residual error is approximately the same for fixed settings
of the parameters at their approximate mean values and for parameters
which are allowed to vary about the mean value. The percentage of human
operator output power accounted for by the model is also listed. Since
the model accounts for 82.7 percent of the total output power in the
vertical case, and for 63.0 percent in the horizontal case, it can be
considered a reasonably good representation of the human pilot's tracking
characteristics in the two-axis case.

The effects of adjustment gain and error rate term on the mean squared

error ev2 are given in Table 6-5.

TABLE 6-5

Effect of K and q on Model Matching Accuracy

Gain, K q ev2
0 0 0.0095
0.5 0 0.0092
1 0 0.0098
2 0 0.0122
0.5 0 0.0092
0.5 0.5 0.0088
0.5 1.0 0.0098

An increase in adjustment gain produces a poorér match to the human
pilot's output than that obtained with low values of gain. This result
probably is due to the larger parameter excursions from the optimum which
result from increases in adjustment gain. The integrated effect of the
parameter excursions results in an overall mean residual error which is
larger than the one obtained with small parameter excursions. For com-
parison the result of a run made with fixed parameter values is included
(K = 0) which shows & low value of residual error. The mean parameter
values used in this run were determined by visual inspection of the track-

ing record and are not necessarily the true optimum.
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Table 6-5 also shows the effect of the rate term qe on model
matching accuracy. The results indicate a small improvement by
selecting q= 0.5 which had been the optimum in previous portions of

the study from a standpoint of stabilization of the adjustment process.

6.2.7 Comparison of Tracking Performance and Model Matching in One and Two Axes

An extensive number of measures of tracking performance were taken
during the model matching runs in order to evaluate quantitatively the
differences between operator performance in single-axis and in two-axis
tasks. As discussed previously, two subjects were first asked to perform
single axis tracking of horizontal and vertical motions of the display dot
on the oscilloscope screen. The same subjects subsequently performed
two-axis tracking tasks, and a comparison of the performance between these
two situations was highly desirable. 1In addition, the following measures

defining model matching accuracy were determined:
1. Mean square horizontal disturbance input
2. Mean squared vertical disturbance input
3. Mean squared horizontal tracking error
L, Mean squared vertical tracking error
5. Mean squared horizontal controller output
6. Mean squared vertical controller output

7. Mean squared residual matching errors

[¢] €. ] .
S NS LN N TN
no 3] [aV] V] N N

and e 2
v

The mean squared tracking error in each axis can be used to evaluate
the abllity of the operator to perform the tracking task, while the mean
squared residual matching error can be used to evaluate the degree to
which the mathematical model serves to represent the pilot's performance.
A tabulation of these measures and of the values of the four parameters
obtained for each tracking run is given in Table 6-6.

The differences between performance in the one and two-axis tasks
respectively can be seen most clearly by averaging mean squared tracking
error values obtained in Table 6-6. The tabulation of these averaged values
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is given in Table 6-7. A significant increase in normalized mean
sgquared tracking cerror is cbserved for both operators in the two-axis

task as compared with single axis tracking. Normalized performance

measures
2 . 2
3 xh 2 v
X = e X = —
h n 2 v |n 2
o r X
h v

are obtained by using the total power in the input signal as a normalizing
factor. The use of such a normalizing factor is consistent with previous
work published in the literature. The increase in normalized mean
squared tracking error ranges from 20 to 67 percent, and reflects the
increase in the difficulty of the task when the second axis is added.

Table 6-7 shows average values of the parameters obtained for both
axes and both operators. The parameters values obtained in & particular
axis are remarkably consistent, i.e., the 's obtained for the vertical
axis from both operators H and R are approximately equal. Likewise,
the horizontal axis results for both operators are in close agreement.

In view of the rather wide differences in normalized mean squared tracking
error between the operators this consistency in the models indicates that
variations in tracking performance cannot be described completely by the
linear time-varying mathematical model assumed here.

Asymmetry between performance in the two axes is revealed by the
degree to which a mathematical model is capable of representing a pilot's
performance in each axis. Table 6-8 lists (e 2) and (e 2) obtained for
both operators normalized with respect to the mean squared tracking error
in each case. Input mean squared tracking error rather than the disturbance
input were used as normalizing factors in this case since the tracking
error is in fact the input signal to both pilot and model in the moﬁel
match;_g configuration of Figure 2-1. Table 6-8 lists values of (e )n
and (e ) averaged among &ll runs for both operators in the respectlve
axes. It is observed that (e ) is considerably smsller in the vertical

axis than in the horizontal axis, both in single axis tasks and for the
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TABLE 6-8

Comparison of Normalized Matching Accuracy
for Two Operators

— -
- Operator (eh )n (e, z)n
1 19 080 ‘} One-axis
R 112 .060
H 172 '067 Two-axis
R .150 .058

- (e )n Average of Two Operators

Two-axis .160 .062
j:"?
Percent of Total Operator Output Power 15=§;—"
Not Matched by Model y
Operator Horiz. Vertical
H 4.0 2}‘7 1.0ne-axis
R 27.0 12.7
R 33.6 21.2 |

vertical axis of the two-axis task. In other words the mathematical

model represents the operator's performance in the vertical axis more
satisfactorily than in the horizontal axis. The cause of this lack of
symmetry in the performance of the two tasks requires further investiga-
tion. A controlled experiment may be required in order to isolate pertinen
effects such as mismatch between design characteristics of the two axes

of the hand controller which might contribute to the asxm%etry. This
e

result is confimrmed also by & comparison of the values =——= and
Y
h
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e
u which represent the fraction ~f +the total operator's output which

o
W

is not matched by the model (bottom of Table 6-8).

6.2.8 Cross Coupling Between Axes

As discussed in Section 3, two types of cross-coupling between
axes were considered: perceptual (or input) cross coupling and motor
(or output) cross coupling. An extensive visual search of the tracking
records for each run of the two-axis task was made to identify possible
cross-coupling effects between the perceptual input in the vertical axis
on the motor output in the horizontal axis (and vice versa). Such an
examination of the tracking record should reveal disturbances in the
horizontal output resulting from a disturbance in the vertical input when
no such disturbance appears in the horizontal input. After finding
tracking records which show this type of cross-coupling, the correspon-
ding terms were introduced into the model, and parsmeter matching was
performed over the entire length of the tracking run. The resulting
values of ;;E were compared with the value of ;;E obtained when no cross-
coupling terms were employed. It was anticipated that this comparison
would yield evidence of the existence of cross-coupling terms of the
form

BlY,s Byx,, and Bx,

in the horizontal model. However, the resulting tracking records did

not show clearly defined or consistent values of the cross-coupling

terms for the entire length of the tracking record. The corresponding
value of the mean squared residual error actually shows a slight increase
as a result of introducing the 63 cross-coupling term into the mathematical
model. Similar results were observed for the Bl and Bh cross coupling
termms. In general, the introduction of the cross-coupling terms appeared
to be detrimental to overall model matching in terms of residual mean
square error. During the search for cross-coupling terms, the « param-
eters were held fixed at their average values in order to eliminate

possible interaction of the adjustment loop:s.
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Some of the tracking records indicated values of g3which remained
approximately constant for periods ranging from 20 to 60 seconds. A
typical run showing this effect is given in Figure A-35. The cross-
coupling coefficient 63 has a reasonably constant value extending from
t ¥ 130 seconds to t, % 204 seconds at values between 1.2 and 1.6 units.
The effect of introducing the cross-coupling term into the model of the
human operator during this intervél results in approximately 10% reduc-
tion in e2 as shown in Table 6-9. This decrease of e2 indicates the
existence of cross-coupling for short periods of tiﬁe. Similar reduc-

tions of:-2 were observed for other short duration runs.

TABLE 6-9

Effect of Cross-Coupling Term Bx_

on Model of Horizontal Axis Response

) % %
2 2 10 2
IOJ e dt g_—q ez dt

Run By ! tah 2! Ave. DIf. %
1 0 14,59 T .1972
2 0 1b4.49 T4 .1958 .1961
3 0 13.69 70 .1955 .0180 9.2
L 1.6 12.79 72 1776
5 1.6 12.60 T3 1726 .1781
6 1.6 13.63 s .1841

ty Y131 sec t, Y 204 sec

In summary, the model matching technique used in this study is
suitable for detection and quantitative determination of cross-coupling
which occurs in the responses of the human operator in two-axis tracking.
Additional research is required to determine human cross-coupling effects
in realistic tracking situstions which may be caused by the dynamic
characteristics of the controlled element. The task studied here did
not include conditions which would evoke & more consistent coupling in

operator responses.
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6.2.9 Closed-Loop Characteristics of Human Dynamic Response

The closed-loop stability of the model was examined for a single axis
task and one axis of the two-axis task. Results showed only a minor shift
in the closed-loop poles with little effect on system stability.

The human dynamic response equation obtained from a typical single-
axis tracking run is given by

Z .29 (.525 s + 1)
G (S) = =
1 hS (.036 8° + .21s +1)

whereas a typical case of two-axis tracking ylelded

269 (.206 5 + 1)
(.0385 % + 154 & + 1)

Gl(s) =

In both tasks the controlled clement dynamics was characterized by

10

Gy(s) = 3 (s +1)
The resulting characteristic equations of the closed-loop system are

.0363h-+.2h6 53 + 1.21 32 +1.5285 +3.9=0
for the single axis case, and

.0385 sh + .1925 83 + 1.154 s 4 1.769 8 + 2,69 = 0

for the two-axis case.
The closed loop poles obtained from these characteristic eguations

are given below:

Single-axis Task (vertical) Two-axis Task (vertical axis)
8) = -1.55 + 4.0} 5, = <1.67 + 4.29}
s, = -L.55 - b,03 S, = -1.67 - 4.29)
83 = - .315 + 2.043 5y = = .83 + 1.623
8, = = 315 - 2.04) g, = -.83 -1.62)
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These data signify stable closed-loop operation, in agreement
with the stable performance observed in all single and two-axis human
tracking experiments performed in this study. Other researchers in
the field have obtained unstable roots from parameter identification
studies of two-axis tracking data that appeared stable on inspection:*

A more comprehensive investigation of this point should be desirable.

*
Verbal communication by Mr. M. Sadoff of NASA Ames Research Center.
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CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

Automatic adjustment techniques for determining the parameters of

dynamic models of the human operator have been investigated experimen-
tally and analytically with emphasis on developing practical computer
methods for this task. These techniques operate in the time domain and
determine the parameters of linear or nonlinear differential equations
which match human operator cutput date by minimizing a selected error cri-
terion by a gradient or steepest descent process. This approach avoids
any constraints of linearity and time-invariance of the dynamic model
vhich are frequently found in methods used by other researchers. The
use of transfer functions or describing functions to characterize the
human operator's input-output relationship has been included only where
it was strictly applicable: in such cases the differential equation
varameters and the transfer function parameters obtained in similar
tracking tasks were found comparable.

The study proceeded from paremeter matching of linear time-invar-
iant and time-variant models (Parts 1 and 2) of the human operator in a
single-axis tracking situation to nonlinear models (Part 3). In each
case the necessary confidence in the model matching technique was developed
by first applying the technicue guccessfully to a system with known param-
clters before attempting the more exacting task of matching human opera-
tors! data. The final part consisted in matching human output data in a
two-axis tracking situation charascterized by symmetrical and uncoupled
dynamics of the controlled element. In all situations considered in this
study the operator periormed a compensatory tracking task by observing
tracking errors displayed on an oscilloscope screen and by manipulating
a 2-axis fingertip control stick to null the error.

This study wes primarily concerned with methods development

rather than with obtaining and cataloguing humen operator performance

data. Inasmuch as the method of automatic model matching has been developed

to the point of providing consistent human operator parameters with small

residual model matching errors it will be desirable in further studies
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to apply the method to an evaluation of human performance data in a
systematic manner in tracking and control problems of practical in-
terest.

Significant experimental results obtained in this study include:
the improvement of stability characteristics of the parameter adjustment
loops by introducing an error rate term into the criterion function; the
demonstration of parameter tracking in time-variant dynamic models; the
ability to determine parameters of nonlinear models; and the development
of techniques for determining cross-coupling coefficients in two-axis
tracking data. The most important theoretical results include the ex-
planation of the continuous gradient adjustment process and of fluctua-
tion of the local gradient vector in the parameter space. The influence
of excitation frequencies and adjustment gain on the dynamics of the
adjustment process was analyzed. This clarified the source of transient
peaks in the time histories of individual parameters. In addition, the
nature of dynamic interaction of individual adjustment loops and the
differences in relative adjustment gain were analyzed and expressed
in terms of the sensitivity matrix which governs the adjustment rate
of each of the parameters being simultaneously optimized.

Results of primary interest regarding computer programming included
the simplification of computer channels which yield the influence co-
efficients ui (e. g., only one sensitivity equation and cne model equa-
tion is needed to yield the four influence coefficients of the basic
linear model); computer techniques for iterative and sequential model
matching; computer techniques for detecting and measuring cross-coupling
phenomena; and computer programming for determining the parsmeters of
analytic and nonanalytic nonlinear characteristics which may be present
in the model structure, such as deadspace, limiting, relay switching,
and hysteresis effects.

It is recommended that future research into model matching of

human operators be addressed to two areas in general:

1) +the study of advanced methods of model matching including
methods which were outside the scope of the above investiga-

tions.
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2) the study of human tracking performance in tasks of practical
importance, including multi-axis tasks with essential cross-

coupling.

The results of the above investigations permit the use of continuous
and iterative model matching techniques with increased confidence in man-
ual control and tracking situations which can conveniently be described
in terms of differential equations rather than by transfer functions.
This removes the restrictions on linearity and time-invariance of the
model imposed by other techniques currently in use and simplifies the
manipulation of model equations in deriving influence coefficients.

The mean-square tracking error as well as the parameters of the
operator's mathematical model yield important measures of tracking per-
formance and should be considered as related aspects in the description
of human tracking capability. Determination of quentitative relations
between these measures should be of great theoretical and practical in-

terest. The tracking error also

g

ields quantitative information on the
stationarity of the operator's tracking behavior as well as on the sta-
tionarity of the controlled system dynamics. It can, for example, pro-
vide important cues on the state of training of the operator which in
turn may explain fluctuations occurring in the parameters of the mathe-
matical model.

A second measure of importance which should be the subject of further
research is the model matching error itself. This error term can yield
much information on missing elements in the mathematical model in addi-
tion to registering the quality of model matching performence. The rela-
tive power in the model matching error as compared to that of the tracking
error provides a quantitative measure of model matching accuracy which is
often more significant than the absolute power. This relationship was
briefly explored in the 2-axis tracking results of Phase 4 but should be
further investigated in any subsequent studies.

An aspect of great significance which should also be studied for
a better understanding of human tracking performance in multi-axis tasks
is the reception and interpretation of displayed stimuli by the operator.
Clearly, the presentation of specific stimuli such as vertical and hori-

zontal dot excursions on an integrated display instrument is an idealization
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gseldom encountered in practice. The stimuli received may be more diffuse,
including visual cues from flight instruments, visual cues from the extra-
vehicular scene, plus kinesthetic and proprioceptive feedback stimuli.
The significant effect of additional motion cues on pilot tracking per-
formance has been demonstrated by the interesting results of Adams' study
(19 ). Practical considerations of vehicle control and of the controller
characteristics should also be included in plans for further studies with

emphasis on clear definition of pilot input stimuli.
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APPENDIX A

Model Matching Time-Histories

The sample time-histories presented in this Appendix were
selected to exhibit significant characteristics of the parameter
optimization processes studied experimentally. These specimens
serve to illustrate the analytical results discussed in Section 5
of this report and support the conclusions derived from the experi-
mental study presented in Section 6. The reader will find detailed
explanations in the latter section. Symbols used to designate out-
put variables in the oscillograph records can be identified by refer-
ence to the block diagram, shown in Figure A-l,

+ .
X Human Y s € s Error | £(e,¢)
~| Operator —> [; Criterion
z
—_ > 4 |
Model Nt
y Z
e e
&
I —— —— ——— e _‘
I uy i of |
j Sensitivity > Gradient >, > —K I
)!x Equations Computation |
K 3 X;
' . ui % I
| - S l
Parameter Adjustment Signals |
 _ - T

In iterative parameter adjustment this block is
replaced by finite difference scheme
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APPENDIX B

A COMPARISON OF THE NASA AND STL MODEL MATCHING IMPLEMENTATION

The purpose of this section is to compare the analog computer tech-
nique used at NASA/Langley Research Center (2 ), (18) with the method
used at STL for the "continuous model matching method" in the present
study.

The NASA method is based on the work of Whitaker, Osburn and
Kezer on adaptive control (1), while the "output error" method used in
the STL study is based on the work of Margolis and Leondes (21). The
method will be compared on the basis of a) error criterion, b) determi-

nation of sensitivity coefficients, c) inherent errors and limitations.

Bl. Error Criterion

Both the NASA work and the STL work are based on minimization of
a quadratic function of the matching error. Specifically, Whitaker's
+

. . \ to =2T (Bﬂl)
Fw = 3 e 4t

vhich represents the integral squared matching error. In practice,
however; when continuous parameter adjustment is desired, the work is

based on a new criterion

£, = My o= 1ef 23 - )° (B.2)

where z is the model output and y is the output of the system being

*
modeled.
The STL work uses a somewhat more general criterion given by

£, = (e + qé)2 (B.3)

*

In Whitaker's work the words "model" and "system" must be interchanged
to be applicable for model matching work, since the model-referenced
adaptive control theory uses a fixed model and an adjustable system.



8426 -6006-RU~-000
Page 155

where the term qé is introduced for improved convergence. It is clear

that the two criteria are equivalent for q = O,

B2, Determination of Sensitivity Coefficients u

i

The coefficlents u, can be evaluated in several ways. First,
we note that

. =9e _ 9(-y) _ 2=z (B.4)

. a
S py 3 p, I,

since the system output y is independent of the model parameter pi. The
method used by Whitaker is based on block diagram manipulation. Sensi-
tivity coéfficients are obtained by mechanizing a filter whose output is
the desired coefficient Uy, and whose inputs are one or more model signals.
For example, consider the model defined by

Z +p, 2 =p

A

5 X (B.5)

In transfer function form
. p, X (s) ‘
: - B.
S CES NN (8:6)

Formal differentiation can be used to obtain

32 __X(s) B.
SRy 1)

_ oz
¢ 9P,
can be obtained from a filter with an input x(t), as

which is interpreted to mean that the coefficient u

shown below:

x(t) 1 u
— s +p;

Figure B=l
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Similarly

P2 x (s) . z(s) (8.8)
(s +p))° SR

2z _
37,

and the filter configuration is given below:

-1 u
z(t) e 1

Figure B-2

It should be noted that (as Whitaker points out) the partial derivatives
employed above are only used formelly, and are strictly valid only when

the parameters are constant.

Now, the parameter adjustment is based on the relationship

é =z = K 37 ==K eu (B°9)

i P pi i

Consequently, the filters of Figure B-1 and B-2, followed by multi-
pliers and integrators, are used to provide the variable parameters
in the model.

The method used at STL is based on explicit computation of the
influence coefficient by differentiation of the model differential
equation with respect to the parameter. Thus, for equation (B.S), the
sensitivity equations obtained are

°

U + Py U =z

4 + P u, = X (B.10)

which can be solved for the u . Clearly, the filters of Figures

B-1 and B-2 are identical with the equations (B.1l0).
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The use of model signals in the implementation of the influence
coefficients can be further illustrated by the following example:

2 = "
z +Q z+a2 X +0thx

3
which corresponds to the model used in this study. Consider the in-

fluence coefficients u, and U, These can be obtained from the

3

equations

Uz +0 uy + Gpuy =X (B.11)

i;ll- + al L;.h + 02 uh = X (B.lZ)

If we set up a model to solve (B.l12) it can be drawn in the "filter"

notation as:

x @) / T Uy
.5"1‘0(,5 *+ %,

Figure B=3

But from (B.ll) it can be seen that
uh=u3
and consequently uy, is also available from the same filter output.

It should be noted that finite differences can also be used to
determine influence coefficients, so that

y(pl+ Apl) - Y(Pl;t) : oY (B..l3)
NPy P

n
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B.3 Inherent Errors, Differences and Limitations

It follows from the preceding discussion that the "filter" method
and the influence coefficient programming method (14) are essentially
identical when the parameters are constant. If the parameters are being
adjusted;, then in the STL method the parameters are adjusted both in the
model and in the sensitivity equation. In the NASA approach, the filter
parameters remain invariant. The latter approach is clearly valid when
the parameters are close to their true values, but may suffer from poorer
convergence when the parameters are far from their correct values. When

the parameters p; are close to their "true" values a,, it is even possi-

i
ble to use system influence coefficients as approximate equivalents to

the model sensitivities, i.e. let

This approach is mentioned by Whitaker and was used extensively by
Donalson (20). When the values of P and a; are far apart, however; or
when the ai are completely unknown, the choice of the fixed parameters

in the filter becomes another degree of freedom in the problem and a
particular choice may have to be justified analytically or experimentally.
An extension of Whitaker's method using variable filters was studied ex-
tensively at STL by W.J. Klerk &nd termed "dynamic model reference adaptive

control” (1'7).

Neither method yields the actual sensitivities when the parameters

are varying, since then the uy are not defined.

The explicit parameter influence method is directly applicable to
nonlinear system. Since transfer function manipulation is not possible
in the nonlinear case, the time domain or differential equation approach

is indicated.

Finally; the explicit parameter influence coefficient method makes
it possible to generalize the criterion function by addition of rate

terms, absolute value terms; etc.
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Summary

The signal filtering method of Whitaker and the influence coef-
ficient method enployed by Margolis are equivalent for linear time-
invariant systems. fThey Aiffer only in whether the parameters in the
sensitivity equations (or filters) remain constant or are adjusted.
The influence coefficient method is readily extended to more general
criterion functions and to nonlinear systems where transfer functions
are not applicable.
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GLOSSARY

Parameter in the system to be identified.

Parameter in the model of the human operator.

Cross=-coupling parameter in the model of the human operator.
Nonlinear cross-=coupling parameter in the model of the human operator.
Initial condition model parameter.

Output error (e = z-y).

Time-integrated error criterion.

Instantaneous error criterion.

Subscript refers to the horizontal axis in a two-axis tracking task.
Gain.,

Iterative notation - refers to the kth iteration.

Random noise - zero frequency spectral density = 2.4L —— .

A constant introducing error rate compensation.
Finite difference approximation of the gradient.
Input disturbance function.

Laplace operator.

Time.

Influence coefficient, Jz/9d Q.

Subscript refers to vertical axis of a two-axis task.
Oscilloscope display displacement; centimeters.

Output of the human operator;, + 1 unit gull stick deflection
of + 30 degrees. '

Output of the model of the human operator.

Output of a second model of the human operator with the ith parameter
increased by Aa:l .



